$\begin{array}{l} \text{Ideals on } \omega \\ \mathcal{I}\text{-MAD families: cardinality and indestructibility} \\ \mathbb{P}_{l}\text{-indestructible extensions of MAD families} \end{array}$

Classical and idealized MAD families

Barnabás Farkas

Budapest University of Technology (BME)

Hejnice 2011

ヘロン 人間 とくほ とくほ とう

= 990

 $\begin{array}{l} \mbox{Ideals on } \omega \\ \mbox{\mathcal{I}-MAD families: cardinality and indestructibility} \\ \mathbb{P}_l\mbox{-indestructible extensions of MAD families} \end{array}$

1 Ideals on ω

- Basics and examples
- Ideals generated by submeasures

2 *I*-MAD families: cardinality and indestructibility

- The *I*-almost-disjointness number
- Forcing-indestructibility

3 \mathbb{P}_{l} -indestructible extensions of MAD families

- A theorem of Hrušák and Zapletal
- Random-indestructible extensions of MAD families

 $\mathcal{I}\text{-}\mathsf{MAD}$ families: cardinality and indestructibility $\mathbb{P}_{I}\text{-}\mathsf{indestructible}$ extensions of MAD families

Basic properties

Basics and examples Ideals generated by submeasures

Barnabás Farkas (BME) Classical and idealized MAD families

ヘロト 人間 とくほとくほとう

₹ 990

 $\begin{array}{l} \text{Ideals on } \omega \\ \mathcal{I}\text{-MAD families: cardinality and indestructibility} \\ \mathbb{P}_l\text{-indestructible extensions of MAD families} \end{array}$

Basics and examples Ideals generated by submeasures

Basic properties

Let X be an infinite set. If $\mathcal{I} \subseteq \mathcal{P}(X)$ is an *ideal on* X, then we always assume that

 $[X]^{<\omega} \subseteq \mathcal{I} \text{ and } X \notin \mathcal{I}.$

ヘロン 人間 とくほ とくほ とう

э.

 $\begin{array}{l} \text{Ideals on } \omega \\ \mathcal{I}\text{-MAD families: cardinality and indestructibility} \\ \mathbb{P}_l\text{-indestructible extensions of MAD families} \end{array}$

Basics and examples Ideals generated by submeasures

Basic properties

Let X be an infinite set. If $\mathcal{I} \subseteq \mathcal{P}(X)$ is an *ideal on* X, then we always assume that

 $[X]^{<\omega} \subseteq \mathcal{I} \text{ and } X \notin \mathcal{I}.$

An ideal \mathcal{I} on ω is

ヘロン 人間 とくほ とくほ とう

1

Ideals on ω \mathcal{I} -MAD families: cardinality and indestructibility \mathbb{P}_{l} -indestructible extensions of MAD families

Basics and examples Ideals generated by submeasures

Basic properties

Let X be an infinite set. If $\mathcal{I} \subseteq \mathcal{P}(X)$ is an *ideal on* X, then we always assume that

 $[X]^{<\omega} \subseteq \mathcal{I} \text{ and } X \notin \mathcal{I}.$

An ideal \mathcal{I} on ω is

• a *P-ideal*, if for all countable $\{A_n : n \in \omega\} \subseteq \mathcal{I}$, there is a $B \in \mathcal{I}$ such that $A_n \subseteq^* B$ for $n \in \omega$ ($A \subseteq^* B \Leftrightarrow |A \setminus B| < \omega$),

イロト 不得 とくほ とくほとう

Ideals on ω \mathcal{I} -MAD families: cardinality and indestructibility \mathbb{P}_{l} -indestructible extensions of MAD families

Basics and examples Ideals generated by submeasures

Basic properties

Let X be an infinite set. If $\mathcal{I} \subseteq \mathcal{P}(X)$ is an *ideal on* X, then we always assume that

 $[X]^{<\omega} \subseteq \mathcal{I} \text{ and } X \notin \mathcal{I}.$

An ideal \mathcal{I} on ω is

• a *P-ideal*, if for all countable $\{A_n : n \in \omega\} \subseteq \mathcal{I}$, there is a $B \in \mathcal{I}$ such that $A_n \subseteq^* B$ for $n \in \omega$ ($A \subseteq^* B \Leftrightarrow |A \setminus B| < \omega$),

イロト 不得 とくほ とくほとう

Ideals on ω \mathcal{I} -MAD families: cardinality and indestructibility \mathbb{P}_{I} -indestructible extensions of MAD families.

Basics and examples Ideals generated by submeasures

Basic properties

Let X be an infinite set. If $\mathcal{I} \subseteq \mathcal{P}(X)$ is an *ideal on* X, then we always assume that

 $[X]^{<\omega} \subseteq \mathcal{I} \text{ and } X \notin \mathcal{I}.$

An ideal \mathcal{I} on ω is

- a *P-ideal*, if for all countable $\{A_n : n \in \omega\} \subseteq \mathcal{I}$, there is a $B \in \mathcal{I}$ such that $A_n \subseteq^* B$ for $n \in \omega$ ($A \subseteq^* B \Leftrightarrow |A \setminus B| < \omega$),
- Borel (analytic, meager, null, etc.) if *I* ⊆ *P*(ω) ≃ 2^ω is Borel (analytic, meager, null, etc.) in the Cantor-space;

ヘロト ヘアト ヘビト ヘビト

Ideals on ω \mathcal{I} -MAD families: cardinality and indestructibility \mathbb{P}_{I} -indestructible extensions of MAD families.

Basics and examples Ideals generated by submeasures

Basic properties

Let X be an infinite set. If $\mathcal{I} \subseteq \mathcal{P}(X)$ is an *ideal on* X, then we always assume that

 $[X]^{<\omega} \subseteq \mathcal{I} \text{ and } X \notin \mathcal{I}.$

An ideal \mathcal{I} on ω is

- a *P-ideal*, if for all countable $\{A_n : n \in \omega\} \subseteq \mathcal{I}$, there is a $B \in \mathcal{I}$ such that $A_n \subseteq^* B$ for $n \in \omega$ ($A \subseteq^* B \Leftrightarrow |A \setminus B| < \omega$),
- Borel (analytic, meager, null, etc.) if *I* ⊆ *P*(ω) ≃ 2^ω is Borel (analytic, meager, null, etc.) in the Cantor-space;

• *tall* if
$$\forall X \in [\omega]^{\omega} \mathcal{I} \cap [X]^{\omega} \neq \emptyset$$
.

ヘロト ヘアト ヘビト ヘビト

 $\mathcal{I}\text{-}\mathsf{MAD}$ families: cardinality and indestructibility $\mathbb{P}_{I}\text{-}\mathsf{indestructible}$ extensions of MAD families

Basics and examples Ideals generated by submeasures

Barnabás Farkas (BME) Classical and idealized MAD families

ヘロト 人間 とくほとくほとう

 \mathcal{I} -MAD families: cardinality and indestructibility \mathbb{P}_{I} -indestructible extensions of MAD families

Examples

Summable ideals

If $h: \omega \to (0, \infty)$ and $\sum_{n \in \omega} h(n) = \infty$, then the summable ideal genarated by h:

$$\mathcal{I}_h = \bigg\{ A \subseteq \omega : \sum_{n \in A} h(n) < \infty \bigg\}.$$

Basics and examples

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

 \mathcal{I} -MAD families: cardinality and indestructibility \mathbb{P}_{I} -indestructible extensions of MAD families

Examples

Summable ideals

If $h: \omega \to (0, \infty)$ and $\sum_{n \in \omega} h(n) = \infty$, then the summable ideal genarated by h:

$$\mathcal{I}_h = \bigg\{ \mathbf{A} \subseteq \omega : \sum_{\mathbf{n} \in \mathbf{A}} h(\mathbf{n}) < \infty \bigg\}.$$

 \mathcal{I}_h is an F_σ P-ideal.

Basics and examples Ideals generated by submeasures

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

 \mathcal{I} -MAD families: cardinality and indestructibility \mathbb{P}_{I} -indestructible extensions of MAD families

Examples

Summable ideals

If $h: \omega \to (0, \infty)$ and $\sum_{n \in \omega} h(n) = \infty$, then the summable ideal genarated by h:

$$\mathcal{I}_h = \bigg\{ A \subseteq \omega : \sum_{n \in A} h(n) < \infty \bigg\}.$$

 \mathcal{I}_h is an \mathcal{F}_σ P-ideal. \mathcal{I}_h is tall $\iff \lim_{n \to \infty} h(n) = 0.$

イロン 不得 とくほ とくほ とうほ

Basics and examples

 \mathcal{I} -MAD families: cardinality and indestructibility \mathbb{P}_{I} -indestructible extensions of MAD families

Examples

Summable ideals

If $h: \omega \to (0, \infty)$ and $\sum_{n \in \omega} h(n) = \infty$, then the summable ideal genarated by h:

$$\mathcal{I}_h = \bigg\{ A \subseteq \omega : \sum_{n \in A} h(n) < \infty \bigg\}.$$

Basics and examples

 \mathcal{I}_h is an \mathcal{F}_σ P-ideal. \mathcal{I}_h is tall $\iff \lim_{n \to \infty} h(n) = 0.$

Density ideals

Let $\vec{\mu} = \langle \mu_n : n \in \omega \rangle$ be a sequence of measures on ω with pairwise disjoint finite supports (P_n), and assume $\limsup_{n \to \infty} \mu_n(P_n) > 0$. Then the *density ideal associated to* $\vec{\mu}$:

$$\mathcal{Z}_{\vec{\mu}} = \Big\{ \mathbf{A} \subseteq \omega : \lim_{n \to \infty} \mu_n(\mathbf{A} \cap \mathbf{P}_n) = \mathbf{0} \Big\}.$$

 \mathcal{I} -MAD families: cardinality and indestructibility \mathbb{P}_{I} -indestructible extensions of MAD families

Examples

Summable ideals

If $h: \omega \to (0, \infty)$ and $\sum_{n \in \omega} h(n) = \infty$, then the summable ideal genarated by h:

$$\mathcal{I}_h = \bigg\{ A \subseteq \omega : \sum_{n \in A} h(n) < \infty \bigg\}.$$

Basics and examples

 \mathcal{I}_h is an \mathcal{F}_σ P-ideal. \mathcal{I}_h is tall $\iff \lim_{n \to \infty} h(n) = 0.$

Density ideals

Let $\vec{\mu} = \langle \mu_n : n \in \omega \rangle$ be a sequence of measures on ω with pairwise disjoint finite supports (P_n), and assume $\limsup_{n \to \infty} \mu_n(P_n) > 0$. Then the *density ideal associated to* $\vec{\mu}$:

$$\mathcal{Z}_{\vec{\mu}} = \Big\{ \mathbf{A} \subseteq \omega : \lim_{n \to \infty} \mu_n(\mathbf{A} \cap \mathbf{P}_n) = \mathbf{0} \Big\}.$$

 $\mathcal{Z}_{\vec{\mu}}$ is an $F_{\sigma\delta}$ P-ideal.

 \mathcal{I} -MAD families: cardinality and indestructibility \mathbb{P}_{I} -indestructible extensions of MAD families

Examples

Summable ideals

If $h: \omega \to (0, \infty)$ and $\sum_{n \in \omega} h(n) = \infty$, then the summable ideal genarated by h:

$$\mathcal{I}_h = \bigg\{ A \subseteq \omega : \sum_{n \in A} h(n) < \infty \bigg\}.$$

Basics and examples

 \mathcal{I}_h is an \mathcal{F}_σ P-ideal. \mathcal{I}_h is tall $\iff \lim_{n \to \infty} h(n) = 0.$

Density ideals

Let $\vec{\mu} = \langle \mu_n : n \in \omega \rangle$ be a sequence of measures on ω with pairwise disjoint finite supports (P_n), and assume $\limsup_{n \to \infty} \mu_n(P_n) > 0$. Then the *density ideal associated to* $\vec{\mu}$:

$$\mathcal{Z}_{\vec{\mu}} = \Big\{ \boldsymbol{A} \subseteq \omega : \lim_{n \to \infty} \mu_n (\boldsymbol{A} \cap \boldsymbol{P}_n) = \boldsymbol{0} \Big\}.$$

 $\mathcal{Z}_{\vec{\mu}}$ is an $F_{\sigma\delta}$ P-ideal. $\mathcal{Z}_{\vec{\mu}}$ is tall $\iff \lim_{n \to \infty} \max_{i \in P_n} \mu_n(\{i\}) = 0.$

 $\mathcal{I}\text{-MAD}$ families: cardinality and indestructibility $\mathbb{P}_{I}\text{-indestructible}$ extensions of MAD families

Submeasures on ω

Basics and examples Ideals generated by submeasures

Barnabás Farkas (BME) Classical and idealized MAD families

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

 $\mathcal{I}\text{-}\mathsf{MAD}$ families: cardinality and indestructibility $\mathbb{P}_{I}\text{-}\mathsf{indestructible}$ extensions of MAD families

Basics and examples Ideals generated by submeasures

Submeasures on ω

Definition

A function $\varphi: \mathcal{P}(\omega) \to [\mathbf{0},\infty]$ is a *submeasure* on ω if

(1) $\varphi(\emptyset) = 0;$

(2)
$$X \subseteq Y \subseteq \omega \Rightarrow \varphi(X) \leq \varphi(Y);$$

(3)
$$X, Y \subseteq \omega \Rightarrow \varphi(X \cup Y) \leq \varphi(X) + \varphi(Y);$$

(4)
$$\varphi(\{n\}) < \infty$$
 for each $n \in \omega$.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

 $\mathcal{I}\text{-MAD}$ families: cardinality and indestructibility $\mathbb{P}_{I}\text{-indestructible}$ extensions of MAD families

Basics and examples Ideals generated by submeasures

Submeasures on ω

Definition

A function $\varphi: \mathcal{P}(\omega) \to [\mathbf{0},\infty]$ is a *submeasure* on ω if

(1) $\varphi(\emptyset) = 0;$

(2)
$$X \subseteq Y \subseteq \omega \Rightarrow \varphi(X) \leq \varphi(Y);$$

(3)
$$X, Y \subseteq \omega \Rightarrow \varphi(X \cup Y) \leq \varphi(X) + \varphi(Y);$$

(4) $\varphi(\{n\}) < \infty$ for each $n \in \omega$.

 φ is *lower semicontinuous* (lsc) if

(5)
$$\varphi(X) = \lim_{n \to \infty} \varphi(X \cap n)$$
 for each $X \subseteq \omega$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

 $\mathcal{I}\text{-}\mathsf{MAD}$ families: cardinality and indestructibility $\mathbb{P}_l\text{-}\mathsf{indestructible}$ extensions of MAD families

Basics and examples Ideals generated by submeasures

Submeasures on ω

Definition

A function $\varphi: \mathcal{P}(\omega) \to [\mathbf{0},\infty]$ is a *submeasure* on ω if

- (1) $\varphi(\emptyset) = 0;$
- (2) $X \subseteq Y \subseteq \omega \Rightarrow \varphi(X) \leq \varphi(Y);$
- (3) $X, Y \subseteq \omega \Rightarrow \varphi(X \cup Y) \leq \varphi(X) + \varphi(Y);$
- (4) $\varphi(\{n\}) < \infty$ for each $n \in \omega$.

 φ is *lower semicontinuous* (lsc) if

(5) $\varphi(X) = \lim_{n \to \infty} \varphi(X \cap n)$ for each $X \subseteq \omega$.

Remark

Lsc submeasures are σ -subadditive as well (that is, $\varphi(\bigcup_{n \in \omega} A_n) \leq \sum_{n \in \omega} \varphi(A_n)$ if $A_n \subseteq \omega$).

 $\mathcal{I}\text{-}\mathsf{MAD}$ families: cardinality and indestructibility $\mathbb{P}_{I}\text{-}\mathsf{indestructible}$ extensions of MAD families

 $\operatorname{Fin}(\varphi)$ and $\operatorname{Exh}(\varphi)$

Basics and examples Ideals generated by submeasures

Barnabás Farkas (BME) Classical and idealized MAD families

ヘロト 人間 とくほとく ほとう

₹ 990

 \mathcal{I} -MAD families: cardinality and indestructibility \mathbb{P}_{I} -indestructible extensions of MAD families

Basics and examples Ideals generated by submeasures

$\operatorname{Fin}(\varphi)$ and $\operatorname{Exh}(\varphi)$

We can associate two ideals to an lsc submeasure φ :

$$\begin{aligned}
& \operatorname{Fin}(\varphi) = \{ X \subseteq \omega : \varphi(X) < \infty \}, \\
& \operatorname{Exh}(\varphi) = \{ X \subseteq \omega : \lim_{n \to \infty} \varphi(X \setminus n) = 0 \}.
\end{aligned}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

 \mathcal{I} -MAD families: cardinality and indestructibility \mathbb{P}_{I} -indestructible extensions of MAD families

Basics and examples Ideals generated by submeasures

$\operatorname{Fin}(\varphi)$ and $\operatorname{Exh}(\varphi)$

We can associate two ideals to an lsc submeasure φ :

$$\operatorname{Fin}(\varphi) = \{ X \subseteq \omega : \varphi(X) < \infty \},\$$
$$\operatorname{Exh}(\varphi) = \{ X \subseteq \omega : \lim_{n \to \infty} \varphi(X \setminus n) = 0 \}.$$

 $\operatorname{Fin}(\varphi)$ is an F_{σ} ideal and $\operatorname{Exh}(\varphi)$ is an $F_{\sigma\delta}$ P-ideal.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

 \mathcal{I} -MAD families: cardinality and indestructibility \mathbb{P}_{I} -indestructible extensions of MAD families

Basics and examples Ideals generated by submeasures

$\operatorname{Fin}(\varphi)$ and $\operatorname{Exh}(\varphi)$

We can associate two ideals to an lsc submeasure φ :

$$\operatorname{Fin}(\varphi) = \{ X \subseteq \omega : \varphi(X) < \infty \},\$$
$$\operatorname{Exh}(\varphi) = \{ X \subseteq \omega : \lim_{n \to \infty} \varphi(X \setminus n) = 0 \}.$$

Fin(φ) is an F_{σ} ideal and Exh(φ) is an $F_{\sigma\delta}$ P-ideal. Notation: $||X||_{\varphi} = \lim_{n \to \infty} \varphi(X \setminus n)$.

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

 \mathcal{I} -MAD families: cardinality and indestructibility \mathbb{P}_{I} -indestructible extensions of MAD families

Basics and examples Ideals generated by submeasures

$\operatorname{Fin}(\varphi)$ and $\operatorname{Exh}(\varphi)$

We can associate two ideals to an lsc submeasure φ :

$$\begin{aligned} &\operatorname{Fin}(\varphi) = \{ X \subseteq \omega : \varphi(X) < \infty \}, \\ &\operatorname{Exh}(\varphi) = \{ X \subseteq \omega : \lim_{n \to \infty} \varphi(X \setminus n) = 0 \}. \end{aligned}$$

Fin(φ) is an F_{σ} ideal and Exh(φ) is an $F_{\sigma\delta}$ P-ideal. Notation: $||X||_{\varphi} = \lim_{n \to \infty} \varphi(X \setminus n)$. Remark: Exh(φ) is tall $\iff \lim_{n \to \infty} \varphi(\{n\}) = 0$.

ヘロン 人間 とくほ とくほ とう

1

 \mathcal{I} -MAD families: cardinality and indestructibility \mathbb{P}_{I} -indestructible extensions of MAD families

Basics and examples Ideals generated by submeasures

$\operatorname{Fin}(\varphi)$ and $\operatorname{Exh}(\varphi)$

We can associate two ideals to an lsc submeasure φ :

$$\begin{aligned} &\operatorname{Fin}(\varphi) = \{ X \subseteq \omega : \varphi(X) < \infty \}, \\ &\operatorname{Exh}(\varphi) = \{ X \subseteq \omega : \lim_{n \to \infty} \varphi(X \setminus n) = 0 \}. \end{aligned}$$

Fin(φ) is an F_{σ} ideal and Exh(φ) is an $F_{\sigma\delta}$ P-ideal. Notation: $||X||_{\varphi} = \lim_{n \to \infty} \varphi(X \setminus n)$. Remark: Exh(φ) is tall $\iff \lim_{n \to \infty} \varphi(\{n\}) = 0$.

Theorem (Mazur, Solecki)

Let \mathcal{I} be an ideal on ω .

 \mathcal{I} -MAD families: cardinality and indestructibility \mathbb{P}_{I} -indestructible extensions of MAD families

Basics and examples Ideals generated by submeasures

$\operatorname{Fin}(\varphi)$ and $\operatorname{Exh}(\varphi)$

We can associate two ideals to an lsc submeasure φ :

$$\begin{aligned} &\operatorname{Fin}(\varphi) = \{ X \subseteq \omega : \varphi(X) < \infty \}, \\ &\operatorname{Exh}(\varphi) = \{ X \subseteq \omega : \lim_{n \to \infty} \varphi(X \setminus n) = 0 \}. \end{aligned}$$

Fin(φ) is an F_{σ} ideal and Exh(φ) is an $F_{\sigma\delta}$ P-ideal. Notation: $||X||_{\varphi} = \lim_{n \to \infty} \varphi(X \setminus n)$. Remark: Exh(φ) is tall $\iff \lim_{n \to \infty} \varphi(\{n\}) = 0$.

Theorem (Mazur, Solecki)

Let \mathcal{I} be an ideal on ω .

• \mathcal{I} is an F_{σ} ideal $\iff \mathcal{I} = Fin(\varphi)$ for some lsc φ .

 \mathcal{I} -MAD families: cardinality and indestructibility \mathbb{P}_{I} -indestructible extensions of MAD families

Basics and examples Ideals generated by submeasures

$\operatorname{Fin}(\varphi)$ and $\operatorname{Exh}(\varphi)$

We can associate two ideals to an lsc submeasure φ :

$$\begin{aligned} &\operatorname{Fin}(\varphi) = \{ X \subseteq \omega : \varphi(X) < \infty \}, \\ &\operatorname{Exh}(\varphi) = \{ X \subseteq \omega : \lim_{n \to \infty} \varphi(X \setminus n) = 0 \}. \end{aligned}$$

Fin(φ) is an F_{σ} ideal and Exh(φ) is an $F_{\sigma\delta}$ P-ideal. Notation: $||X||_{\varphi} = \lim_{n \to \infty} \varphi(X \setminus n)$. Remark: Exh(φ) is tall $\iff \lim_{n \to \infty} \varphi(\{n\}) = 0$.

Theorem (Mazur, Solecki)

Let \mathcal{I} be an ideal on ω .

- \mathcal{I} is an F_{σ} ideal $\iff \mathcal{I} = \operatorname{Fin}(\varphi)$ for some lsc φ .
- \mathcal{I} is an analytic *P*-ideal $\iff \mathcal{I} = \operatorname{Exh}(\varphi)$ for some lsc φ .

 \mathcal{I} -MAD families: cardinality and indestructibility \mathbb{P}_{I} -indestructible extensions of MAD families

Basics and examples Ideals generated by submeasures

$\operatorname{Fin}(\varphi)$ and $\operatorname{Exh}(\varphi)$

We can associate two ideals to an lsc submeasure φ :

$$\begin{aligned} &\operatorname{Fin}(\varphi) = \{ X \subseteq \omega : \varphi(X) < \infty \}, \\ &\operatorname{Exh}(\varphi) = \{ X \subseteq \omega : \lim_{n \to \infty} \varphi(X \setminus n) = 0 \}. \end{aligned}$$

Fin(φ) is an F_{σ} ideal and Exh(φ) is an $F_{\sigma\delta}$ P-ideal. Notation: $||X||_{\varphi} = \lim_{n \to \infty} \varphi(X \setminus n)$. Remark: Exh(φ) is tall $\iff \lim_{n \to \infty} \varphi(\{n\}) = 0$.

Theorem (Mazur, Solecki)

Let \mathcal{I} be an ideal on ω .

- \mathcal{I} is an F_{σ} ideal $\iff \mathcal{I} = Fin(\varphi)$ for some lsc φ .
- \mathcal{I} is an analytic *P*-ideal $\iff \mathcal{I} = \operatorname{Exh}(\varphi)$ for some lsc φ .
- \mathcal{I} is an F_{σ} P-ideal $\iff \mathcal{I} = Fin(\varphi) = Exh(\varphi)$ for some lsc φ .

 $\mathcal{I}\text{-}\mathsf{MAD}$ families: cardinality and indestructibility $\mathbb{P}_{I}\text{-}\mathsf{indestructible}$ extensions of MAD families

Basics and examples Ideals generated by submeasures

Summable ideals

$$\mathcal{I}_h = \operatorname{Fin}(\varphi_h) = \operatorname{Exh}(\varphi_h)$$
 where $\varphi_h(A) = \sum_{n \in A} h(n)$.

Remark (Farah)

There are F_{σ} P-ideals which are not summable.

Density ideals

$$\mathcal{Z}_{\vec{\mu}} = \operatorname{Exh}(\varphi_{\vec{\mu}})$$
 where $\varphi_{\vec{\mu}}(A) = \sup_{n \in \omega} \mu_n(A \cap P_n)$.

イロト 不得 とくほと くほとう

3

 $\label{eq:local_solution} \begin{array}{c} \mbox{Ideals on } \omega \\ \mbox{\mathcal{I}-MAD families: cardinality and indestructibility} \\ \mathbb{P}_{l}\mbox{-indestructible extensions of MAD families} \end{array}$

The \mathcal{I} -almost-disjointness number Forcing-indestructibility

\mathcal{I} -MAD families: $\mathfrak{a}(\mathcal{I})$ and $\overline{\mathfrak{a}}(\mathcal{I})$

Barnabás Farkas (BME) Classical and idealized MAD families

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

 $\label{eq:loss} \begin{array}{l} \mbox{Ideals on } \omega \\ \mbox{\mathcal{I}-MAD families: cardinality and indestructibility} \\ \mathbb{P}_{l}\mbox{-indestructible extensions of MAD families} \end{array}$

The *I*-almost-disjointness number Forcing-indestructibility

\mathcal{I} -MAD families: $\mathfrak{a}(\mathcal{I})$ and $\overline{\mathfrak{a}}(\mathcal{I})$

Let \mathcal{I} be an ideal on ω . An infinite(!) $\mathcal{A} \subseteq \mathcal{I}^+ = \mathcal{P}(\omega) \setminus \mathcal{I}$ family is

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

 $\label{eq:local_solution} \begin{array}{c} \mbox{Ideals on } \omega \\ \mbox{\mathcal{I}-MAD families: cardinality and indestructibility} \\ \mathbb{P}_{l}\mbox{-indestructible extensions of MAD families} \end{array}$

The \mathcal{I} -almost-disjointness number Forcing-indestructibility

\mathcal{I} -MAD families: $\mathfrak{a}(\mathcal{I})$ and $\overline{\mathfrak{a}}(\mathcal{I})$

Let \mathcal{I} be an ideal on ω . An infinite(!) $\mathcal{A} \subseteq \mathcal{I}^+ = \mathcal{P}(\omega) \setminus \mathcal{I}$ family is

I-almost-disjoint (*I*-AD) if the intersection of any two distinct elements of *A* is contained in *I*;

<ロ> <同> <同> < 回> < 回> < 回> < 回> < 回> < 回</p>

Ideals on ω *I*-MAD families: cardinality and indestructibility \mathbb{P}_l -indestructible extensions of MAD families

The \mathcal{I} -almost-disjointness number Forcing-indestructibility

\mathcal{I} -MAD families: $\mathfrak{a}(\mathcal{I})$ and $\overline{\mathfrak{a}}(\mathcal{I})$

Let \mathcal{I} be an ideal on ω . An infinite(!) $\mathcal{A} \subseteq \mathcal{I}^+ = \mathcal{P}(\omega) \backslash \mathcal{I}$ family is

- *I*-almost-disjoint (*I*-AD) if the intersection of any two distinct elements of *A* is contained in *I*;
- *maximal* \mathcal{I} -*almost-disjoint* (\mathcal{I} -MAD) if for all $X \in \mathcal{I}^+$ there is an $A \in \mathcal{A}$ such that $X \cap A \in \mathcal{I}^+$.

<ロ> <同> <同> < 回> < 回> < 回> < 回> < 回> < 回</p>

Ideals on ω *I*-MAD families: cardinality and indestructibility \mathbb{P}_l -indestructible extensions of MAD families

The \mathcal{I} -almost-disjointness number Forcing-indestructibility

\mathcal{I} -MAD families: $\mathfrak{a}(\mathcal{I})$ and $\overline{\mathfrak{a}}(\mathcal{I})$

Let \mathcal{I} be an ideal on ω . An infinite(!) $\mathcal{A} \subseteq \mathcal{I}^+ = \mathcal{P}(\omega) \setminus \mathcal{I}$ family is

- *I*-almost-disjoint (*I*-AD) if the intersection of any two distinct elements of *A* is contained in *I*;
- *maximal* \mathcal{I} -*almost-disjoint* (\mathcal{I} -MAD) if for all $X \in \mathcal{I}^+$ there is an $A \in \mathcal{A}$ such that $X \cap A \in \mathcal{I}^+$.
- Let $\mathfrak{a}(\mathcal{I})$ be the minimal cardinality of an \mathcal{I} -MAD family.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

 $\label{eq:loss_loss} \begin{array}{c} \mbox{Ideals on } \omega \\ \mbox{\mathcal{I}-MAD families: cardinality and indestructibility} \\ \mathbb{P}_l\mbox{-indestructible extensions of MAD families} \end{array}$

The \mathcal{I} -almost-disjointness number Forcing-indestructibility

\mathcal{I} -MAD families: $\mathfrak{a}(\mathcal{I})$ and $\overline{\mathfrak{a}}(\mathcal{I})$

Let \mathcal{I} be an ideal on ω . An infinite(!) $\mathcal{A} \subseteq \mathcal{I}^+ = \mathcal{P}(\omega) \setminus \mathcal{I}$ family is

- *I*-almost-disjoint (*I*-AD) if the intersection of any two distinct elements of *A* is contained in *I*;
- *maximal* \mathcal{I} -*almost-disjoint* (\mathcal{I} -MAD) if for all $X \in \mathcal{I}^+$ there is an $A \in \mathcal{A}$ such that $X \cap A \in \mathcal{I}^+$.

Let $\mathfrak{a}(\mathcal{I})$ be the minimal cardinality of an \mathcal{I} -MAD family.

Proposition (F.-Soukup)

 $\mathfrak{a}(\mathcal{I}) > \omega$ for each F_{σ} ideal \mathcal{I} but $\mathfrak{a}(\mathcal{Z}_{\vec{\mu}}) = \omega$ for tall density ideals.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

The \mathcal{I} -almost-disjointness number Forcing-indestructibility

\mathcal{I} -MAD families: $\mathfrak{a}(\mathcal{I})$ and $\overline{\mathfrak{a}}(\mathcal{I})$

Let \mathcal{I} be an ideal on ω . An infinite(!) $\mathcal{A} \subseteq \mathcal{I}^+ = \mathcal{P}(\omega) \setminus \mathcal{I}$ family is

- *I*-almost-disjoint (*I*-AD) if the intersection of any two distinct elements of *A* is contained in *I*;
- *maximal* \mathcal{I} -*almost-disjoint* (\mathcal{I} -MAD) if for all $X \in \mathcal{I}^+$ there is an $A \in \mathcal{A}$ such that $X \cap A \in \mathcal{I}^+$.

Let $\mathfrak{a}(\mathcal{I})$ be the minimal cardinality of an \mathcal{I} -MAD family.

Proposition (F.-Soukup)

 $\mathfrak{a}(\mathcal{I}) > \omega$ for each F_{σ} ideal \mathcal{I} but $\mathfrak{a}(\mathcal{Z}_{\vec{\mu}}) = \omega$ for tall density ideals.

Fact

There are \mathcal{I} -AD families of cardinality \mathfrak{c} for each analytic ideal \mathcal{I} .

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

The \mathcal{I} -almost-disjointness number Forcing-indestructibility

\mathcal{I} -MAD families: $\mathfrak{a}(\mathcal{I})$ and $\overline{\mathfrak{a}}(\mathcal{I})$

Let \mathcal{I} be an ideal on ω . An infinite(!) $\mathcal{A} \subseteq \mathcal{I}^+ = \mathcal{P}(\omega) \setminus \mathcal{I}$ family is

- *I*-almost-disjoint (*I*-AD) if the intersection of any two distinct elements of *A* is contained in *I*;
- *maximal* \mathcal{I} -*almost-disjoint* (\mathcal{I} -MAD) if for all $X \in \mathcal{I}^+$ there is an $A \in \mathcal{A}$ such that $X \cap A \in \mathcal{I}^+$.

Let $\mathfrak{a}(\mathcal{I})$ be the minimal cardinality of an \mathcal{I} -MAD family.

Proposition (F.-Soukup)

 $\mathfrak{a}(\mathcal{I}) > \omega$ for each F_{σ} ideal \mathcal{I} but $\mathfrak{a}(\mathcal{Z}_{\vec{\mu}}) = \omega$ for tall density ideals.

Fact

There are \mathcal{I} -AD families of cardinality \mathfrak{c} for each analytic ideal \mathcal{I} .

Let $\bar{\mathfrak{a}}(\mathcal{I})$ be the minimal uncountable cardinality of an \mathcal{I} -MAD family.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

The *I*-almost-disjointness number Forcing-indestructibility

\mathcal{I} -MAD families: $\mathfrak{a}(\mathcal{I})$ and $\overline{\mathfrak{a}}(\mathcal{I})$

Let \mathcal{I} be an ideal on ω . An infinite(!) $\mathcal{A} \subseteq \mathcal{I}^+ = \mathcal{P}(\omega) \setminus \mathcal{I}$ family is

- *I*-almost-disjoint (*I*-AD) if the intersection of any two distinct elements of *A* is contained in *I*;
- *maximal* \mathcal{I} -*almost-disjoint* (\mathcal{I} -MAD) if for all $X \in \mathcal{I}^+$ there is an $A \in \mathcal{A}$ such that $X \cap A \in \mathcal{I}^+$.

Let $\mathfrak{a}(\mathcal{I})$ be the minimal cardinality of an \mathcal{I} -MAD family.

Proposition (F.-Soukup)

 $\mathfrak{a}(\mathcal{I}) > \omega$ for each F_{σ} ideal \mathcal{I} but $\mathfrak{a}(\mathcal{Z}_{\vec{\mu}}) = \omega$ for tall density ideals.

Fact

There are \mathcal{I} -AD families of cardinality \mathfrak{c} for each analytic ideal \mathcal{I} .

Let $\bar{\mathfrak{a}}(\mathcal{I})$ be the minimal uncountable cardinality of an \mathcal{I} -MAD family.

Proposition (F.-Soukup) – Lower and upper bounds for $\bar{\mathfrak{a}}(\mathcal{I})$

 $\mathfrak{b} \leq \overline{\mathfrak{a}}(\mathcal{I})$ for each $F_{\sigma\delta}$ P-ideal \mathcal{I} (but not for all F_{σ} ideals (Brendle)), and $\overline{\mathfrak{a}}(\mathcal{Z}_{\vec{\mu}}) \leq \mathfrak{a}$ for each density ideal $\mathcal{Z}_{\vec{\mu}}$.

 $\begin{array}{l} \text{Ideals on } \omega \\ \mathcal{I}\text{-MAD families: cardinality and indestructibility} \\ \mathbb{P}_{l}\text{-indestructible extensions of MAD families} \end{array}$

The \mathcal{I} -almost-disjointness number Forcing-indestructibility

Forcing-indestructibility under CH

Barnabás Farkas (BME) Classical and idealized MAD families

イロト 不得 とくほと くほとう

 $\label{eq:local_$

The \mathcal{I} -almost-disjointness number Forcing-indestructibility

Forcing-indestructibility under CH

If \mathcal{I} is analytic, then an \mathcal{I} -MAD family \mathcal{A} is \mathbb{P} -*indestructible* if $\Vdash_{\mathbb{P}}$ " \mathcal{A} is \mathcal{I} -MAD".

イロン 不得 とくほ とくほう 一日

The \mathcal{I} -almost-disjointness number Forcing-indestructibility

Forcing-indestructibility under CH

If \mathcal{I} is analytic, then an \mathcal{I} -MAD family \mathcal{A} is \mathbb{P} -*indestructible* if $\Vdash_{\mathbb{P}}$ " \mathcal{A} is \mathcal{I} -MAD".

Observation

If \mathcal{I} is a Borel ideal, then being a countable \mathcal{I} -MAD family is a Π_1^1 property so it is absolute for transitive models.

ヘロン 人間 とくほ とくほ とう

The \mathcal{I} -almost-disjointness number Forcing-indestructibility

Forcing-indestructibility under CH

If \mathcal{I} is analytic, then an \mathcal{I} -MAD family \mathcal{A} is \mathbb{P} -*indestructible* if $\Vdash_{\mathbb{P}}$ " \mathcal{A} is \mathcal{I} -MAD".

Observation

If \mathcal{I} is a Borel ideal, then being a countable \mathcal{I} -MAD family is a Π_1^1 property so it is absolute for transitive models.

Fact

If \mathcal{I} is an $\mathcal{F}_{\sigma\delta}$ P-ideal and \mathbb{P} adds dominating reals, then \mathbb{P} destroys all uncountable \mathcal{I} -MAD families.

ヘロン 人間 とくほ とくほ とう

The \mathcal{I} -almost-disjointness number Forcing-indestructibility

Forcing-indestructibility under CH

If \mathcal{I} is analytic, then an \mathcal{I} -MAD family \mathcal{A} is \mathbb{P} -*indestructible* if $\Vdash_{\mathbb{P}}$ " \mathcal{A} is \mathcal{I} -MAD".

Observation

If \mathcal{I} is a Borel ideal, then being a countable \mathcal{I} -MAD family is a Π_1^1 property so it is absolute for transitive models.

Fact

If \mathcal{I} is an $\mathcal{F}_{\sigma\delta}$ P-ideal and \mathbb{P} adds dominating reals, then \mathbb{P} destroys all uncountable \mathcal{I} -MAD families. (It is not true for all \mathcal{F}_{σ} ideals! (Brendle))

The \mathcal{I} -almost-disjointness number Forcing-indestructibility

Forcing-indestructibility under CH

If \mathcal{I} is analytic, then an \mathcal{I} -MAD family \mathcal{A} is \mathbb{P} -*indestructible* if $\Vdash_{\mathbb{P}}$ " \mathcal{A} is \mathcal{I} -MAD".

Observation

If \mathcal{I} is a Borel ideal, then being a countable \mathcal{I} -MAD family is a Π_1^1 property so it is absolute for transitive models.

Fact

If \mathcal{I} is an $F_{\sigma\delta}$ P-ideal and \mathbb{P} adds dominating reals, then \mathbb{P} destroys all uncountable \mathcal{I} -MAD families. (It is not true for all F_{σ} ideals! (Brendle))

Theorem (Kunen)

CH implies that there exist Cohen- and random-indestructible MAD families.

・ロト ・ 理 ト ・ ヨ ト ・

The \mathcal{I} -almost-disjointness number Forcing-indestructibility

Forcing-indestructibility under CH

If \mathcal{I} is analytic, then an \mathcal{I} -MAD family \mathcal{A} is \mathbb{P} -*indestructible* if $\Vdash_{\mathbb{P}}$ " \mathcal{A} is \mathcal{I} -MAD".

Observation

If \mathcal{I} is a Borel ideal, then being a countable \mathcal{I} -MAD family is a Π_1^1 property so it is absolute for transitive models.

Fact

If \mathcal{I} is an $F_{\sigma\delta}$ P-ideal and \mathbb{P} adds dominating reals, then \mathbb{P} destroys all uncountable \mathcal{I} -MAD families. (It is not true for all F_{σ} ideals! (Brendle))

Theorem (Kunen)

CH implies that there exist Cohen- and random-indestructible MAD families.

Theorem (F., Soukup)

CH implies that there exist uncountable Cohen- and randomindestructible \mathcal{I} -MAD families for all F_{σ} ideals and $F_{\sigma\delta}$ P-ideals. $\begin{array}{l} \text{Ideals on } \omega \\ \mathcal{I}\text{-MAD families: cardinality and indestructibility} \\ \mathbb{P}_{l}\text{-indestructible extensions of MAD families} \end{array}$

The \mathcal{I} -almost-disjointness number Forcing-indestructibility

Motivation and a general question

Barnabás Farkas (BME) Classical and idealized MAD families

イロト 不得 とくほと くほとう

The \mathcal{I} -almost-disjointness number Forcing-indestructibility

Motivation and a general question

Theorem (Fuchino, Geschke, Soukup)

In $V^{\mathbb{C}_{\omega_1}}$ there are AD families \mathcal{A} and \mathcal{B} such that, in any generic extension of $V^{\mathbb{C}_{\omega_1}}$ by a ccc forcing notion $\mathbb{P} \in V$

- A cannot be extended to a Cohen-indestructible MAD family,
- B cannot be extended to a random-indestructible MAD family.

The \mathcal{I} -almost-disjointness number Forcing-indestructibility

Motivation and a general question

Theorem (Fuchino, Geschke, Soukup)

In $V^{\mathbb{C}_{\omega_1}}$ there are AD families \mathcal{A} and \mathcal{B} such that, in any generic extension of $V^{\mathbb{C}_{\omega_1}}$ by a ccc forcing notion $\mathbb{P} \in V$

- A cannot be extended to a Cohen-indestructible MAD family,
- *B* cannot be extended to a random-indestructible MAD family.

Question (Soukup)

Can any AD family be extended to a Cohen- (or random-) indestructible MAD family in a ccc forcing extension?

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

The \mathcal{I} -almost-disjointness number Forcing-indestructibility

Motivation and a general question

Theorem (Fuchino, Geschke, Soukup)

In $V^{\mathbb{C}_{\omega_1}}$ there are AD families \mathcal{A} and \mathcal{B} such that, in any generic extension of $V^{\mathbb{C}_{\omega_1}}$ by a ccc forcing notion $\mathbb{P} \in V$

- A cannot be extended to a Cohen-indestructible MAD family,
- B cannot be extended to a random-indestructible MAD family.

Question (Soukup)

Can any AD family be extended to a Cohen- (or random-) indestructible MAD family in a ccc forcing extension?

Idealized question

Assume \mathcal{I} is an analytic ideal on ω , \mathcal{A} is a \mathcal{I} -AD family, and let \mathbb{F} be a forcing notion. Can \mathcal{A} be extended to an \mathbb{F} -indestructible \mathcal{I} -MAD family in a ccc forcing extension?

 $\begin{array}{l} \text{Ideals on } \omega \\ \mathcal{I}\text{-MAD families: cardinality and indestructibility} \\ \mathbb{P}_{l}\text{-indestructible extensions of MAD families} \end{array}$

The \mathcal{I} -almost-disjointness number Forcing-indestructibility

\mathbb{F} -indestructible extensions for $\mathbb{F} \in V$

Barnabás Farkas (BME) Classical and idealized MAD families

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

The *I*-almost-disjointness number Forcing-indestructibility

\mathbb{F} -indestructible extensions for $\mathbb{F} \in V$

Theorem (F.)

Assume \mathbb{F} is a forcing notion, \mathcal{I} is an F_{σ} ideal or an $F_{\sigma\delta}$ P-ideal, and \mathcal{A} is an \mathcal{I} -AD family.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

The *I*-almost-disjointness number Forcing-indestructibility

\mathbb{F} -indestructible extensions for $\mathbb{F} \in V$

Theorem (F.)

Assume \mathbb{F} is a forcing notion, \mathcal{I} is an F_{σ} ideal or an $F_{\sigma\delta}$ P-ideal, and \mathcal{A} is an \mathcal{I} -AD family. Then in a ccc forcing extension \mathcal{A} can be extended to an \mathbb{F} -indestructible \mathcal{I} -MAD family.

ヘロン 人間 とくほ とくほ とう

The *I*-almost-disjointness number Forcing-indestructibility

\mathbb{F} -indestructible extensions for $\mathbb{F} \in V$

Theorem (F.)

Assume \mathbb{F} is a forcing notion, \mathcal{I} is an F_{σ} ideal or an $F_{\sigma\delta}$ P-ideal, and \mathcal{A} is an \mathcal{I} -AD family. Then in a ccc forcing extension \mathcal{A} can be extended to an \mathbb{F} -indestructible \mathcal{I} -MAD family.

<u>Proof</u> for $F_{\sigma\delta}$ P-ideals: Let $\mathcal{I} = \text{Exh}(\varphi)$. First we need the following

The \mathcal{I} -almost-disjointness number Forcing-indestructibility

\mathbb{F} -indestructible extensions for $\mathbb{F} \in V$

Theorem (F.)

Assume \mathbb{F} is a forcing notion, \mathcal{I} is an F_{σ} ideal or an $F_{\sigma\delta}$ P-ideal, and \mathcal{A} is an \mathcal{I} -AD family. Then in a ccc forcing extension \mathcal{A} can be extended to an \mathbb{F} -indestructible \mathcal{I} -MAD family.

<u>Proof</u> for $F_{\sigma\delta}$ P-ideals: Let $\mathcal{I} = \text{Exh}(\varphi)$. First we need the following <u>Claim</u>: The formula $\Phi(\mathbb{F}, p, \dot{X}, \varphi, \varepsilon)$ in the LST which says that

The \mathcal{I} -almost-disjointness number Forcing-indestructibility

\mathbb{F} -indestructible extensions for $\mathbb{F} \in V$

Theorem (F.)

Assume \mathbb{F} is a forcing notion, \mathcal{I} is an F_{σ} ideal or an $F_{\sigma\delta}$ P-ideal, and \mathcal{A} is an \mathcal{I} -AD family. Then in a ccc forcing extension \mathcal{A} can be extended to an \mathbb{F} -indestructible \mathcal{I} -MAD family.

<u>Proof</u> for $F_{\sigma\delta}$ P-ideals: Let $\mathcal{I} = \text{Exh}(\varphi)$. First we need the following <u>Claim</u>: The formula $\Phi(\mathbb{F}, p, \dot{X}, \varphi, \varepsilon)$ in the LST which says that

 \mathbb{F} is a forcing notion, $p \in \mathbb{F}$, \dot{X} is a nice \mathbb{F} -name for a subset of ω , φ is an lsc subm. on ω , $\varepsilon \in \mathbf{R}$, and $p \Vdash_{\mathbb{F}} \varphi(\dot{X}) > \varepsilon$ (or $p \Vdash_{\mathbb{F}} ||\dot{X}||_{\varphi} > \varepsilon$)

The \mathcal{I} -almost-disjointness number Forcing-indestructibility

\mathbb{F} -indestructible extensions for $\mathbb{F} \in V$

Theorem (F.)

Assume \mathbb{F} is a forcing notion, \mathcal{I} is an F_{σ} ideal or an $F_{\sigma\delta}$ P-ideal, and \mathcal{A} is an \mathcal{I} -AD family. Then in a ccc forcing extension \mathcal{A} can be extended to an \mathbb{F} -indestructible \mathcal{I} -MAD family.

<u>Proof</u> for $F_{\sigma\delta}$ P-ideals: Let $\mathcal{I} = \text{Exh}(\varphi)$. First we need the following <u>Claim</u>: The formula $\Phi(\mathbb{F}, p, \dot{X}, \varphi, \varepsilon)$ in the LST which says that

 \mathbb{F} is a forcing notion, $p \in \mathbb{F}$, \dot{X} is a nice \mathbb{F} -name for a subset of ω , φ is an lsc subm. on ω , $\varepsilon \in \mathbf{R}$, and $p \Vdash_{\mathbb{F}} \varphi(\dot{X}) > \varepsilon$ (or $p \Vdash_{\mathbb{F}} ||\dot{X}||_{\varphi} > \varepsilon$)

is absolute for transitive models. (Proof: Use antichains....)

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

The \mathcal{I} -almost-disjointness number Forcing-indestructibility

\mathbb{F} -indestructible extensions for $\mathbb{F} \in V$

Theorem (F.)

Assume \mathbb{F} is a forcing notion, \mathcal{I} is an F_{σ} ideal or an $F_{\sigma\delta}$ P-ideal, and \mathcal{A} is an \mathcal{I} -AD family. Then in a ccc forcing extension \mathcal{A} can be extended to an \mathbb{F} -indestructible \mathcal{I} -MAD family.

<u>Proof</u> for $F_{\sigma\delta}$ P-ideals: Let $\mathcal{I} = \text{Exh}(\varphi)$. First we need the following <u>Claim</u>: The formula $\Phi(\mathbb{F}, p, \dot{X}, \varphi, \varepsilon)$ in the LST which says that

 \mathbb{F} is a forcing notion, $p \in \mathbb{F}$, \dot{X} is a nice \mathbb{F} -name for a subset of ω , φ is an lsc subm. on ω , $\varepsilon \in \mathbf{R}$, and $p \Vdash_{\mathbb{F}} \varphi(\dot{X}) > \varepsilon$ (or $p \Vdash_{\mathbb{F}} ||\dot{X}||_{\varphi} > \varepsilon$)

is absolute for transitive models. (<u>Proof</u>: Use antichains....) Let $\kappa = |\mathbb{F}|$. We will define a κ^+ -stage finite support iteration of ccc forcing notions and extend \mathcal{A} by one element at each stage.

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

\mathbb{F} -indestructible extensions for $\mathbb{F} \in V$

Theorem (F.)

Assume \mathbb{F} is a forcing notion, \mathcal{I} is an F_{σ} ideal or an $F_{\sigma\delta}$ P-ideal, and \mathcal{A} is an \mathcal{I} -AD family. Then in a ccc forcing extension \mathcal{A} can be extended to an \mathbb{F} -indestructible \mathcal{I} -MAD family.

<u>Proof</u> for $F_{\sigma\delta}$ P-ideals: Let $\mathcal{I} = \text{Exh}(\varphi)$. First we need the following <u>Claim</u>: The formula $\Phi(\mathbb{F}, p, \dot{X}, \varphi, \varepsilon)$ in the LST which says that

 \mathbb{F} is a forcing notion, $p \in \mathbb{F}$, \dot{X} is a nice \mathbb{F} -name for a subset of ω , φ is an lsc subm. on ω , $\varepsilon \in \mathbf{R}$, and $p \Vdash_{\mathbb{F}} \varphi(\dot{X}) > \varepsilon$ (or $p \Vdash_{\mathbb{F}} ||\dot{X}||_{\varphi} > \varepsilon$)

is absolute for transitive models. (<u>Proof</u>: Use antichains....) Let $\kappa = |\mathbb{F}|$. We will define a κ^+ -stage finite support iteration of ccc forcing notions and extend \mathcal{A} by one element at each stage. At stage each stage we will work with a condition p from \mathbb{F} such that each $p \in \mathbb{F}$ appears in cofinally many stages in κ^+ .

・ロト ・ 理 ト ・ ヨ ト ・

\mathbb{F} -indestructible extensions for $\mathbb{F} \in V$

Theorem (F.)

Assume \mathbb{F} is a forcing notion, \mathcal{I} is an F_{σ} ideal or an $F_{\sigma\delta}$ P-ideal, and \mathcal{A} is an \mathcal{I} -AD family. Then in a ccc forcing extension \mathcal{A} can be extended to an \mathbb{F} -indestructible \mathcal{I} -MAD family.

<u>Proof</u> for $F_{\sigma\delta}$ P-ideals: Let $\mathcal{I} = \text{Exh}(\varphi)$. First we need the following <u>Claim</u>: The formula $\Phi(\mathbb{F}, p, \dot{X}, \varphi, \varepsilon)$ in the LST which says that

 \mathbb{F} is a forcing notion, $p \in \mathbb{F}$, \dot{X} is a nice \mathbb{F} -name for a subset of ω , φ is an lsc subm. on ω , $\varepsilon \in \mathbf{R}$, and $p \Vdash_{\mathbb{F}} \varphi(\dot{X}) > \varepsilon$ (or $p \Vdash_{\mathbb{F}} ||\dot{X}||_{\varphi} > \varepsilon$)

is absolute for transitive models. (Proof: Use antichains....) Let $\kappa = |\mathbb{F}|$. We will define a κ^+ -stage finite support iteration of ccc forcing notions and extend \mathcal{A} by one element at each stage. At stage each stage we will work with a condition p from \mathbb{F} such that each $p \in \mathbb{F}$ appears in cofinally many stages in κ^+ . General stage: We have a $p \in \mathbb{F}$ and an \mathcal{I} -AD family \mathcal{A} . We want define a \mathbb{Q} and add an $\dot{S} \in \mathcal{I}^+$ such that $\forall A \in \mathcal{A} A \cap \dot{S} \in \mathcal{I}$ and

\mathbb{F} -indestructible extensions for $\mathbb{F} \in V$

Theorem (F.)

Assume \mathbb{F} is a forcing notion, \mathcal{I} is an F_{σ} ideal or an $F_{\sigma\delta}$ P-ideal, and \mathcal{A} is an \mathcal{I} -AD family. Then in a ccc forcing extension \mathcal{A} can be extended to an \mathbb{F} -indestructible \mathcal{I} -MAD family.

<u>Proof</u> for $F_{\sigma\delta}$ P-ideals: Let $\mathcal{I} = \text{Exh}(\varphi)$. First we need the following <u>Claim</u>: The formula $\Phi(\mathbb{F}, p, \dot{X}, \varphi, \varepsilon)$ in the LST which says that

 \mathbb{F} is a forcing notion, $p \in \mathbb{F}$, \dot{X} is a nice \mathbb{F} -name for a subset of ω , φ is an lsc subm. on ω , $\varepsilon \in \mathbf{R}$, and $p \Vdash_{\mathbb{F}} \varphi(\dot{X}) > \varepsilon$ (or $p \Vdash_{\mathbb{F}} ||\dot{X}||_{\varphi} > \varepsilon$)

is absolute for transitive models. (Proof: Use antichains....) Let $\kappa = |\mathbb{F}|$. We will define a κ^+ -stage finite support iteration of ccc forcing notions and extend \mathcal{A} by one element at each stage. At stage each stage we will work with a condition p from \mathbb{F} such that each $p \in \mathbb{F}$ appears in cofinally many stages in κ^+ . General stage: We have a $p \in \mathbb{F}$ and an \mathcal{I} -AD family \mathcal{A} . We want define a \mathbb{Q} and add an $\dot{S} \in \mathcal{I}^+$ such that $\forall A \in \mathcal{A} A \cap \dot{S} \in \mathcal{I}$ and $\begin{array}{l} \text{Ideals on } \omega \\ \mathcal{I}\text{-MAD families: cardinality and indestructibility} \\ \mathbb{P}_{l}\text{-indestructible extensions of MAD families} \end{array}$

The *I*-almost-disjointness number Forcing-indestructibility

$\textbf{IF } p \Vdash_{\mathbb{F}}`` \|\dot{X}\|_{\varphi} > \varepsilon \text{ and } \forall A \in \mathcal{A} \ \dot{X} \cap A \in \mathcal{I}" \text{ for some } \dot{X} \text{ and } \varepsilon > 0,$

Barnabás Farkas (BME) Classical and idealized MAD families

 $\label{eq:local_$

The *I*-almost-disjointness number Forcing-indestructibility

Barnabás Farkas (BME) Classical and idealized MAD families

Let \mathcal{X} be the set of all nice \mathbb{F} -names for a subset of ω from the **IF** part with a fixed $\varepsilon = \varepsilon(\dot{X})$.

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

IF $p \Vdash_{\mathbb{F}} "\|\dot{X}\|_{\varphi} > \varepsilon$ and $\forall A \in \mathcal{A} \ \dot{X} \cap A \in \mathcal{I}$ " for some \dot{X} and $\varepsilon > 0$, THEN $V^{\mathbb{Q}} \models p \Vdash_{\mathbb{F}} \dot{X} \cap \dot{S} \in \mathcal{I}^+$.

Let \mathcal{X} be the set of all nice \mathbb{F} -names for a subset of ω from the **IF** part with a fixed $\varepsilon = \varepsilon(\dot{X})$.

Let \mathbb{Q} be the following forcing notion: $(s, n, F, \mathcal{B}, \mathcal{Y}) \in \mathbb{Q}$ iff

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

IF $p \Vdash_{\mathbb{F}} "\|\dot{X}\|_{\varphi} > \varepsilon$ and $\forall A \in \mathcal{A} \ \dot{X} \cap A \in \mathcal{I}$ " for some \dot{X} and $\varepsilon > 0$, THEN $V^{\mathbb{Q}} \models p \Vdash_{\mathbb{F}} \dot{X} \cap \dot{S} \in \mathcal{I}^+$.

Let \mathcal{X} be the set of all nice \mathbb{F} -names for a subset of ω from the **IF** part with a fixed $\varepsilon = \varepsilon(\dot{X})$.

Let \mathbb{Q} be the following forcing notion: $(s, n, F, \mathcal{B}, \mathcal{Y}) \in \mathbb{Q}$ iff

 $s \subseteq n \in \omega, F \in [\{q \in \mathbb{F} : q \leq p\} \times \omega]^{<\omega}, B \in [\mathcal{A}]^{<\omega}, \text{ and } \mathcal{Y} \in [\mathcal{X}]^{<\omega}.$

<ロ> <同> <同> < 回> < 回> < 回> < 回> < 回> < 回</p>

IF $p \Vdash_{\mathbb{F}} "\|\dot{X}\|_{\varphi} > \varepsilon$ and $\forall A \in \mathcal{A} \ \dot{X} \cap A \in \mathcal{I}$ " for some \dot{X} and $\varepsilon > 0$, THEN $V^{\mathbb{Q}} \models p \Vdash_{\mathbb{F}} \dot{X} \cap \dot{S} \in \mathcal{I}^+$.

Let \mathcal{X} be the set of all nice \mathbb{F} -names for a subset of ω from the **IF** part with a fixed $\varepsilon = \varepsilon(\dot{X})$.

Let \mathbb{Q} be the following forcing notion: $(s, n, F, \mathcal{B}, \mathcal{Y}) \in \mathbb{Q}$ iff

 $s \subseteq n \in \omega, F \in [\{q \in \mathbb{F} : q \leq p\} \times \omega]^{<\omega}, B \in [\mathcal{A}]^{<\omega}, \text{ and } \mathcal{Y} \in [\mathcal{X}]^{<\omega}.$ $(s_1, n_1, F_1, \mathcal{B}_1, \mathcal{Y}_1) < (s_0, n_0, F_0, \mathcal{B}_0, \mathcal{Y}_0) \text{ iff}$

<ロ> <同> <同> < 回> < 回> < 回> < 回> < 回> < 回</p>

IF $p \Vdash_{\mathbb{F}} "\|\dot{X}\|_{\varphi} > \varepsilon$ and $\forall A \in \mathcal{A} \ \dot{X} \cap A \in \mathcal{I}$ " for some \dot{X} and $\varepsilon > 0$, THEN $V^{\mathbb{Q}} \models p \Vdash_{\mathbb{F}} \dot{X} \cap \dot{S} \in \mathcal{I}^+$.

Let \mathcal{X} be the set of all nice \mathbb{F} -names for a subset of ω from the **IF** part with a fixed $\varepsilon = \varepsilon(\dot{X})$.

Let \mathbb{Q} be the following forcing notion: $(s, n, F, \mathcal{B}, \mathcal{Y}) \in \mathbb{Q}$ iff

 $s \subseteq n \in \omega, F \in [\{q \in \mathbb{F} : q \leq p\} \times \omega]^{<\omega}, B \in [\mathcal{A}]^{<\omega}, \text{ and } \mathcal{Y} \in [\mathcal{X}]^{<\omega}.$ $(s_1, n_1, F_1, \mathcal{B}_1, \mathcal{Y}_1) < (s_0, n_0, F_0, \mathcal{B}_0, \mathcal{Y}_0) \text{ iff}$

(a) $n_1 \ge n_0, s_1 \cap n_0 = s_0, F_1 \supseteq F_0, B_1 \supseteq B_0$, and $\mathcal{Y}_1 \supseteq \mathcal{Y}_0$;

(b) $(s_1 \setminus s_0) \cap \bigcup \mathcal{B}_0 = \emptyset;$

(c) $\forall (q,k) \in F_0 \ \forall \ \dot{X} \in \mathcal{Y}_0 \ \exists \ r \leq_{\mathbb{F}} q \ r \Vdash_{\mathbb{F}} \varphi((s_1 \setminus k) \cap \dot{X}) > \varepsilon(\dot{X}).$

<ロ> <同> <同> <三> <三> <三> <三> <三</p>

IF $p \Vdash_{\mathbb{F}} "\|\dot{X}\|_{\varphi} > \varepsilon$ and $\forall A \in \mathcal{A} \ \dot{X} \cap A \in \mathcal{I}$ " for some \dot{X} and $\varepsilon > 0$, THEN $V^{\mathbb{Q}} \models p \Vdash_{\mathbb{F}} \dot{X} \cap \dot{S} \in \mathcal{I}^+$.

Let \mathcal{X} be the set of all nice \mathbb{F} -names for a subset of ω from the **IF** part with a fixed $\varepsilon = \varepsilon(\dot{X})$.

Let \mathbb{Q} be the following forcing notion: $(s, n, F, \mathcal{B}, \mathcal{Y}) \in \mathbb{Q}$ iff

 $s \subseteq n \in \omega, F \in [\{q \in \mathbb{F} : q \leq p\} \times \omega]^{<\omega}, B \in [\mathcal{A}]^{<\omega}, \text{ and } \mathcal{Y} \in [\mathcal{X}]^{<\omega}.$ $(s_1, n_1, F_1, \mathcal{B}_1, \mathcal{Y}_1) < (s_0, n_0, F_0, \mathcal{B}_0, \mathcal{Y}_0) \text{ iff}$

(a)
$$n_1 \ge n_0, s_1 \cap n_0 = s_0, F_1 \supseteq F_0, \mathcal{B}_1 \supseteq \mathcal{B}_0, \text{ and } \mathcal{Y}_1 \supseteq \mathcal{Y}_0;$$

(b)
$$(s_1 \setminus s_0) \cap \bigcup \mathcal{B}_0 = \emptyset;$$

(c)
$$\forall (q,k) \in F_0 \ \forall \ \dot{X} \in \mathcal{Y}_0 \ \exists \ r \leq_{\mathbb{F}} q \ r \Vdash_{\mathbb{F}} \varphi((s_1 \setminus k) \cap \dot{X}) > \varepsilon(\dot{X}).$$

 \mathbb{Q} is σ -centered.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

IF $p \Vdash_{\mathbb{F}} "\|\dot{X}\|_{\varphi} > \varepsilon$ and $\forall A \in \mathcal{A} \ \dot{X} \cap A \in \mathcal{I}$ " for some \dot{X} and $\varepsilon > 0$, THEN $V^{\mathbb{Q}} \models p \Vdash_{\mathbb{F}} \dot{X} \cap \dot{S} \in \mathcal{I}^+$.

Let \mathcal{X} be the set of all nice \mathbb{F} -names for a subset of ω from the **IF** part with a fixed $\varepsilon = \varepsilon(\dot{X})$.

Let \mathbb{Q} be the following forcing notion: $(s, n, F, \mathcal{B}, \mathcal{Y}) \in \mathbb{Q}$ iff

 $s \subseteq n \in \omega, F \in [\{q \in \mathbb{F} : q \leq p\} \times \omega]^{<\omega}, B \in [\mathcal{A}]^{<\omega}, \text{ and } \mathcal{Y} \in [\mathcal{X}]^{<\omega}.$ $(s_1, n_1, F_1, \mathcal{B}_1, \mathcal{Y}_1) < (s_0, n_0, F_0, \mathcal{B}_0, \mathcal{Y}_0) \text{ iff}$

(a)
$$n_1 \ge n_0$$
, $s_1 \cap n_0 = s_0$, $F_1 \supseteq F_0$, $\mathcal{B}_1 \supseteq \mathcal{B}_0$, and $\mathcal{Y}_1 \supseteq \mathcal{Y}_0$;

(b)
$$(s_1 \setminus s_0) \cap \bigcup \mathcal{B}_0 = \emptyset;$$

(c)
$$\forall (q,k) \in F_0 \ \forall \ \dot{X} \in \mathcal{Y}_0 \ \exists \ r \leq_{\mathbb{F}} q \ r \Vdash_{\mathbb{F}} \varphi((s_1 \setminus k) \cap \dot{X}) > \varepsilon(\dot{X}).$$

 \mathbb{Q} is σ -centered. Let S be the union of the first coordinates of conditions in the \mathbb{Q} -generic filter.

イロン 不得 とくほ とくほう 一日

IF $p \Vdash_{\mathbb{F}} "\|\dot{X}\|_{\varphi} > \varepsilon$ and $\forall A \in \mathcal{A} \ \dot{X} \cap A \in \mathcal{I}$ " for some \dot{X} and $\varepsilon > 0$, THEN $V^{\mathbb{Q}} \models p \Vdash_{\mathbb{F}} \dot{X} \cap \dot{S} \in \mathcal{I}^+$.

Let \mathcal{X} be the set of all nice \mathbb{F} -names for a subset of ω from the **IF** part with a fixed $\varepsilon = \varepsilon(\dot{X})$.

Let \mathbb{Q} be the following forcing notion: $(s, n, F, \mathcal{B}, \mathcal{Y}) \in \mathbb{Q}$ iff

 $s \subseteq n \in \omega, F \in [\{q \in \mathbb{F} : q \leq p\} \times \omega]^{<\omega}, B \in [\mathcal{A}]^{<\omega}, \text{ and } \mathcal{Y} \in [\mathcal{X}]^{<\omega}.$ $(s_1, n_1, F_1, \mathcal{B}_1, \mathcal{Y}_1) < (s_0, n_0, F_0, \mathcal{B}_0, \mathcal{Y}_0) \text{ iff}$

(a)
$$n_1 \ge n_0$$
, $s_1 \cap n_0 = s_0$, $F_1 \supseteq F_0$, $\mathcal{B}_1 \supseteq \mathcal{B}_0$, and $\mathcal{Y}_1 \supseteq \mathcal{Y}_0$;

(b)
$$(s_1 \setminus s_0) \cap \bigcup \mathcal{B}_0 = \emptyset;$$

(c)
$$\forall (q,k) \in F_0 \ \forall \ \dot{X} \in \mathcal{Y}_0 \ \exists \ r \leq_{\mathbb{F}} q \ r \Vdash_{\mathbb{F}} \varphi((s_1 \setminus k) \cap \dot{X}) > \varepsilon(\dot{X}).$$

 \mathbb{Q} is σ -centered. Let \dot{S} be the union of the first coordinates of conditions in the \mathbb{Q} -generic filter.

Using simple density arguments and the Claim above, we obtain that $V^{\mathbb{Q}} \models \mathcal{A} \cup \{\dot{S}\}$ is an \mathcal{I} -AD family and $\forall \dot{X} \in \mathcal{X} \ p \Vdash_{\mathbb{F}} \dot{X} \cap \dot{S} \in \mathcal{I}^+$ ".

・ロト ・ 理 ト ・ ヨ ト ・

 $\begin{array}{c} \text{Ideals on } \omega \\ \mathcal{I}\text{-MAD families: cardinality and indestructibility} \\ \mathbb{P}_{l}\text{-indestructible extensions of MAD families} \end{array}$

Let \mathcal{X} be the set of all nice \mathbb{F} -names for a subset of ω from the **IF** part with a fixed $\varepsilon = \varepsilon(\dot{X})$.

Let \mathbb{Q} be the following forcing notion: $(s, n, F, \mathcal{B}, \mathcal{Y}) \in \mathbb{Q}$ iff

 $s \subseteq n \in \omega, F \in [\{q \in \mathbb{F} : q \leq p\} \times \omega]^{<\omega}, B \in [\mathcal{A}]^{<\omega}, \text{ and } \mathcal{Y} \in [\mathcal{X}]^{<\omega}.$ $(s_1, n_1, F_1, \mathcal{B}_1, \mathcal{Y}_1) < (s_0, n_0, F_0, \mathcal{B}_0, \mathcal{Y}_0) \text{ iff}$

(a)
$$n_1 \ge n_0$$
, $s_1 \cap n_0 = s_0$, $F_1 \supseteq F_0$, $\mathcal{B}_1 \supseteq \mathcal{B}_0$, and $\mathcal{Y}_1 \supseteq \mathcal{Y}_0$;

(b)
$$(s_1 \setminus s_0) \cap \bigcup \mathcal{B}_0 = \emptyset;$$

(c)
$$\forall (q,k) \in F_0 \ \forall \ \dot{X} \in \mathcal{Y}_0 \ \exists \ r \leq_{\mathbb{F}} q \ r \Vdash_{\mathbb{F}} \varphi((s_1 \setminus k) \cap \dot{X}) > \varepsilon(\dot{X}).$$

 \mathbb{Q} is σ -centered. Let \dot{S} be the union of the first coordinates of conditions in the \mathbb{Q} -generic filter.

Using simple density arguments and the Claim above, we obtain that $V^{\mathbb{Q}} \models \mathcal{A} \cup \{\dot{S}\}$ is an \mathcal{I} -AD family and $\forall \dot{X} \in \mathcal{X} \ p \Vdash_{\mathbb{F}} \dot{X} \cap \dot{S} \in \mathcal{I}^+$. The κ^+ -stage iteration kills all possible \dot{X} in the final model which could destroy our extended \mathcal{I} -AD family.

A theorem of Hrušák and Zapletal Random-indestructible extensions of MAD families

ヘロン 人間 とくほ とくほ とう

3

The Katětov (pre)order

Definition

If \mathcal{I} and \mathcal{J} are ideals on ω (or on countable sets) then $\mathcal{I} \leq_{\mathrm{K}} \mathcal{J}$ iff there is an $F \in \omega^{\omega}$ such that $\forall A \in \mathcal{I} F^{-1}[A] \in \mathcal{J}$.

A theorem of Hrušák and Zapletal Random-indestructible extensions of MAD families

ヘロト 人間 とくほとくほとう

The Katětov (pre)order

Definition

If \mathcal{I} and \mathcal{J} are ideals on ω (or on countable sets) then $\mathcal{I} \leq_{\mathrm{K}} \mathcal{J}$ iff there is an $F \in \omega^{\omega}$ such that $\forall A \in \mathcal{I} F^{-1}[A] \in \mathcal{J}$.

The Katětov order is upward directed and c^+ -downward directed (even on tall ideals). Fin = $[\omega]^{<\omega}$ is a \leq_K -minimal element, moreover $\mathcal{I} \not\leq_K$ Fin iff \mathcal{I} is tall.

A theorem of Hrušák and Zapletal Random-indestructible extensions of MAD families

ヘロン ヘアン ヘビン ヘビン

The Katětov (pre)order

Definition

If \mathcal{I} and \mathcal{J} are ideals on ω (or on countable sets) then $\mathcal{I} \leq_{\mathrm{K}} \mathcal{J}$ iff there is an $F \in \omega^{\omega}$ such that $\forall A \in \mathcal{I} F^{-1}[A] \in \mathcal{J}$.

The Katětov order is upward directed and \mathfrak{c}^+ -downward directed (even on tall ideals). Fin = $[\omega]^{<\omega}$ is a \leq_K -minimal element, moreover $\mathcal{I} \not\leq_K$ Fin iff \mathcal{I} is tall.

Fact

Shoenfield's Absoluteness Theorem implies that $\mathcal{I} \leq_K \mathcal{J}$ for Borel ideals is absolute between any pair of transitive models $M \subseteq N$ with $\omega_1^N \subseteq M$.

A theorem of Hrušák and Zapletal Random-indestructible extensions of MAD families

・ロト ・ 理 ト ・ ヨ ト ・

3

Characterizing forcing-indestructibility

Barnabás Farkas (BME) Classical and idealized MAD families

A theorem of Hrušák and Zapletal Random-indestructible extensions of MAD families

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

Characterizing forcing-indestructibility

For a set $A \subseteq \omega^{<\omega}$ (or $A \subseteq 2^{<\omega}$) its *G*_{δ}-*closure* is

 $G_{\delta}(A) = \{ f \in \omega^{\omega} (\text{or } 2^{\omega}) : \exists^{\infty} n f \upharpoonright n \in A \}.$

A theorem of Hrušák and Zapletal Random-indestructible extensions of MAD families

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Characterizing forcing-indestructibility

For a set $A \subseteq \omega^{<\omega}$ (or $A \subseteq 2^{<\omega}$) its G_{δ} -closure is

$$\mathcal{G}_{\delta}(\mathcal{A}) = \{ f \in \omega^{\omega} (ext{or } 2^{\omega}) : \exists^{\infty} \ n \ f \upharpoonright n \in \mathcal{A} \}.$$

The *trace* of a σ -ideal *I* on ω^{ω} (or on 2^{ω}):

 $\operatorname{tr}(I) = \{A \subseteq \omega^{<\omega} (\text{or } 2^{<\omega}) : G_{\delta}(A) \in I\}.$

A theorem of Hrušák and Zapletal Random-indestructible extensions of MAD families

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ○ ○ ○

Characterizing forcing-indestructibility

For a set $A \subseteq \omega^{<\omega}$ (or $A \subseteq 2^{<\omega}$) its G_{δ} -closure is

$$G_{\delta}(A) = \{ f \in \omega^{\omega} (ext{or } 2^{\omega}) : \exists^{\infty} n f \upharpoonright n \in A \}.$$

The *trace* of a σ -ideal *I* on ω^{ω} (or on 2^{ω}):

$$\operatorname{tr}(I) = \{A \subseteq \omega^{<\omega} (\text{or } 2^{<\omega}) : G_{\delta}(A) \in I\}.$$

Clearly, tr(*I*) is an ideal in $\omega^{<\omega}$ (or on $2^{<\omega}$).

A theorem of Hrušák and Zapletal Random-indestructible extensions of MAD families

Characterizing forcing-indestructibility

For a set $A \subseteq \omega^{<\omega}$ (or $A \subseteq 2^{<\omega}$) its G_{δ} -*closure* is

$$G_{\delta}(A) = \{ f \in \omega^{\omega} (ext{or } 2^{\omega}) : \exists^{\infty} n f \upharpoonright n \in A \}.$$

The *trace* of a σ -ideal *I* on ω^{ω} (or on 2^{ω}):

$$\operatorname{tr}(I) = \{ A \subseteq \omega^{<\omega} (\text{or } 2^{<\omega}) : G_{\delta}(A) \in I \}.$$

Clearly, tr(*I*) is an ideal in $\omega^{<\omega}$ (or on $2^{<\omega}$).

Theorem (Hrušák-Zapletal)

Let *I* be a σ -ideal on ω^{ω} (or on 2^{ω}) and assume that $\mathbb{P}_I = \text{Borel}(\omega^{\omega})/I$ is proper with the continuous reading of names (CRN). If \mathcal{A} is a MAD family on ω , then the following are equivalent:

- (1) There is a $B \in \mathbb{P}_l$ such that $B \Vdash \mathcal{A}$ is not maximal".
- (2) There is an $X \in tr(I)^+$ such that $A \leq_K tr(I) \upharpoonright X$.

 $\label{eq:local_solution} \begin{array}{c} \mbox{Ideals on } \omega \\ \ensuremath{\mathcal{I}}\mbox{-MAD families: cardinality and indestructibility} \\ \ensuremath{\mathbb{P}}_{f}\mbox{-indestructible extensions of MAD families} \end{array}$

A theorem of Hrušák and Zapletal Random-indestructible extensions of MAD families

イロト 不得 とくほ とくほ とう

E 990

B-indestructible extensions

Barnabás Farkas (BME) Classical and idealized MAD families

A theorem of Hrušák and Zapletal Random-indestructible extensions of MAD families

ヘロト 人間 とくほ とくほ とう

э.

B-indestructible extensions

Corollary

A theorem of Hrušák and Zapletal Random-indestructible extensions of MAD families

ヘロン 人間 とくほ とくほ とう

B-indestructible extensions

Corollary

Corollary (F.)

Assume A is an AD family. Then A can be extended to a random-indestructible MAD family in a ccc forcing extension.

A theorem of Hrušák and Zapletal Random-indestructible extensions of MAD families

ヘロト 人間 とくほ とくほ とう

э.

B-indestructible extensions

Corollary

Corollary (F.)

Assume A is an AD family. Then A can be extended to a random-indestructible MAD family in a ccc forcing extension.

<u>Proof</u>: "The most natural" iterated extension of A works!

A theorem of Hrušák and Zapletal Random-indestructible extensions of MAD families

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

1

B-indestructible extensions

Corollary

Corollary (F.)

Assume A is an AD family. Then A can be extended to a random-indestructible MAD family in a ccc forcing extension.

<u>Proof</u>: "The most natural" iterated extension of \mathcal{A} works! We will define an ω_1 -stage finite support iteration of ccc forcing notions and extend \mathcal{A} with one element at each stage by the following forcing notion:

A theorem of Hrušák and Zapletal Random-indestructible extensions of MAD families

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

B-indestructible extensions

Corollary

Corollary (F.)

Assume A is an AD family. Then A can be extended to a random-indestructible MAD family in a ccc forcing extension.

<u>Proof</u>: "The most natural" iterated extension of \mathcal{A} works! We will define an ω_1 -stage finite support iteration of ccc forcing notions and extend \mathcal{A} with one element at each stage by the following forcing notion: $(s, n, \mathcal{B}) \in \mathbb{Q}$ iff $s \subseteq n \in \omega$ and $\mathcal{B} \in [\mathcal{A}]^{<\omega}$, $(s_0, n_0, \mathcal{B}_0) \leq (s_1, n_1, \mathcal{B}_1)$ iff (a) $n_0 \geq n_1, s_0 \cap n_1 = s_1$ and $\mathcal{B}_0 \supseteq \mathcal{B}_1$;

(b) $(s_0 \setminus s_1) \cap \bigcup \mathcal{B}_1 = \emptyset$.

A theorem of Hrušák and Zapletal Random-indestructible extensions of MAD families

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

\mathbb{Q} is clearly σ -centered.

Barnabás Farkas (BME) Classical and idealized MAD families

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

 \mathbb{Q} is clearly σ -centered. Let S be the union of the first coordinates of conditions in the \mathbb{Q} -generic filter.

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

 \mathbb{Q} is clearly σ -centered. Let S be the union of the first coordinates of conditions in the \mathbb{Q} -generic filter. Then $\Vdash_{\mathbb{Q}} \mathcal{A} \cup \{S\}$ is an AD family."

ヘロン 人間 とくほ とくほ とう

э.

 \mathbb{Q} is clearly σ -centered. Let S be the union of the first coordinates of conditions in the \mathbb{Q} -generic filter. Then $\Vdash_{\mathbb{Q}} \mathcal{A} \cup \{S\}$ is an AD family." Assume that $X = \{x_k : k \in \omega\} \in \mathcal{P}(2^{<\omega}), \varepsilon = \lambda(G_{\delta}(X)) > 0$, and $F : X \to \omega$ such that $\forall A \in \mathcal{A} F^{-1}[A] \in tr(\mathcal{N}) \upharpoonright X$.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

 \mathbb{Q} is clearly σ -centered. Let S be the union of the first coordinates of conditions in the \mathbb{Q} -generic filter. Then $\Vdash_{\mathbb{Q}} \mathcal{A} \cup \{S\}$ is an AD family." Assume that $X = \{x_k : k \in \omega\} \in \mathcal{P}(2^{<\omega}), \varepsilon = \lambda(G_{\delta}(X)) > 0$, and $F : X \to \omega$ such that $\forall A \in \mathcal{A} F^{-1}[A] \in tr(\mathcal{N}) \upharpoonright X$. We claim that $V^{\mathbb{Q}} \models \lambda(G_{\delta}(F^{-1}[S])) = \varepsilon$ so in $V^{\mathbb{Q}} F$ cannot show that $\mathcal{A} \cup \{S\} \leq_{K} tr(\mathcal{N}) \upharpoonright X$.

ヘロト 人間 とくほ とくほ とう

 \mathbb{Q} is clearly σ -centered. Let S be the union of the first coordinates of conditions in the \mathbb{Q} -generic filter. Then $\Vdash_{\mathbb{Q}} \mathcal{A} \cup \{\dot{S}\}$ is an AD family." Assume that $X = \{x_k : k \in \omega\} \in \mathcal{P}(2^{<\omega}), \varepsilon = \lambda(G_{\delta}(X)) > 0$, and $F : X \to \omega$ such that $\forall A \in \mathcal{A} F^{-1}[A] \in tr(\mathcal{N}) \upharpoonright X$. We claim that $V^{\mathbb{Q}} \models \lambda(G_{\delta}(F^{-1}[\dot{S}])) = \varepsilon$ so in $V^{\mathbb{Q}}$ F cannot show that $\mathcal{A} \cup \{\dot{S}\} \leq_{K} tr(\mathcal{N}) \upharpoonright X$. If $p = (s^{p}, n^{p}, \mathcal{B}^{p}) \in \mathbb{Q}$ then

$$G_{\delta}(F^{-1}[\dot{S}]) = \bigcap_{k \in \omega} \left\{ f \in 2^{\omega} : m \ge k, F(x_m) \in \dot{S}, \text{ and } x_m \subseteq f \right\}.$$

We have to show that the measure of the set after the intersection is at least ε

・ロト ・ 理 ト ・ ヨ ト ・

 \mathbb{Q} is clearly σ -centered. Let S be the union of the first coordinates of conditions in the \mathbb{Q} -generic filter. Then $\Vdash_{\mathbb{Q}} \mathcal{A} \cup \{\dot{S}\}$ is an AD family." Assume that $X = \{x_k : k \in \omega\} \in \mathcal{P}(2^{<\omega}), \varepsilon = \lambda(G_{\delta}(X)) > 0$, and $F : X \to \omega$ such that $\forall A \in \mathcal{A} F^{-1}[A] \in tr(\mathcal{N}) \upharpoonright X$. We claim that $V^{\mathbb{Q}} \models \lambda(G_{\delta}(F^{-1}[\dot{S}])) = \varepsilon$ so in $V^{\mathbb{Q}}$ F cannot show that $\mathcal{A} \cup \{\dot{S}\} \leq_{K} tr(\mathcal{N}) \upharpoonright X$. If $p = (s^{p}, n^{p}, \mathcal{B}^{p}) \in \mathbb{Q}$ then

$$G_{\delta}(F^{-1}[\dot{S}]) = \bigcap_{k \in \omega} \left\{ f \in 2^{\omega} : m \ge k, F(x_m) \in \dot{S}, \text{ and } x_m \subseteq f \right\}.$$

We have to show that the measure of the set after the intersection is at least ε so that the following sets are dense in \mathbb{Q} :

$$m{D}_k^\delta = ig\{ m{p} \in \mathbb{Q} : \lambdaig(\{ f \in 2^\omega : m \ge k, m{F}(x_m) \in m{s}^p \} ig) > \delta ig\}$$

where $\delta < \varepsilon$ and $k \in \omega$. It is followed by our assumption on *F*.

 \mathbb{Q} is clearly σ -centered. Let S be the union of the first coordinates of conditions in the \mathbb{Q} -generic filter. Then $\Vdash_{\mathbb{Q}} \mathcal{A} \cup \{\dot{S}\}$ is an AD family." Assume that $X = \{x_k : k \in \omega\} \in \mathcal{P}(2^{<\omega}), \varepsilon = \lambda(G_{\delta}(X)) > 0$, and $F : X \to \omega$ such that $\forall A \in \mathcal{A} F^{-1}[A] \in tr(\mathcal{N}) \upharpoonright X$. We claim that $V^{\mathbb{Q}} \models \lambda(G_{\delta}(F^{-1}[\dot{S}])) = \varepsilon$ so in $V^{\mathbb{Q}}$ F cannot show that $\mathcal{A} \cup \{\dot{S}\} \leq_{K} tr(\mathcal{N}) \upharpoonright X$. If $p = (s^{p}, n^{p}, \mathcal{B}^{p}) \in \mathbb{Q}$ then

$$G_{\delta}(F^{-1}[\dot{S}]) = \bigcap_{k \in \omega} \left\{ f \in 2^{\omega} : m \ge k, F(x_m) \in \dot{S}, \text{ and } x_m \subseteq f \right\}.$$

We have to show that the measure of the set after the intersection is at least ε so that the following sets are dense in \mathbb{Q} :

$$m{D}_{k}^{\delta} = ig\{ m{
ho} \in \mathbb{Q} : \lambdaig(\{m{f} \in \mathbf{2}^{\omega} : m{m} \geq m{k}, m{F}(m{x}_{m{m}}) \in m{s}^{m{p}} \} ig) > \delta ig\}$$

where $\delta < \varepsilon$ and $k \in \omega$. It is followed by our assumption on *F*. The ω_1 -stage iteration kills all possible Katětov-reduction of our family to tr(\mathcal{N}) $\upharpoonright X$ for some $X \in tr(\mathcal{N})^+$. $\begin{array}{l} \mbox{Ideals on } \omega \\ \mbox{\mathcal{I}-MAD families: cardinality and indestructibility} \\ \mathbb{P}_l\mbox{-indestructible extensions of MAD families} \end{array}$

Problems

Problem 1 (maybe easy)

Can we characterize analytic ideals which has countable $\mathcal{I}\text{-}\mathsf{MAD}$ families?

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Problems

Problem 1 (maybe easy)

Can we characterize analytic ideals which has countable $\mathcal{I}\text{-}\mathsf{MAD}$ families?

Problem 2

Does $\bar{\mathfrak{a}}(\mathcal{I}) \leq \mathfrak{a}$ hold for each $F_{\sigma\delta}$ P-ideal \mathcal{I} ? What about F_{σ} -ideals or analytic ideals?

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Problems

Problem 1 (maybe easy)

Can we characterize analytic ideals which has countable $\mathcal{I}\text{-}\mathsf{MAD}$ families?

Problem 2

Does $\bar{\mathfrak{a}}(\mathcal{I}) \leq \mathfrak{a}$ hold for each $F_{\sigma\delta}$ P-ideal \mathcal{I} ? What about F_{σ} -ideals or analytic ideals?

Problem 3

Consider the natural extension of an AD family by an ω_1 -stage finite support iteration. For which "nicely" definable σ -ideals will the obtained MAD family be \mathbb{P}_l -indestructible?

ヘロト ヘアト ヘビト ヘビト

Problems

Problem 1 (maybe easy)

Can we characterize analytic ideals which has countable $\mathcal{I}\text{-}\mathsf{MAD}$ families?

Problem 2

Does $\bar{\mathfrak{a}}(\mathcal{I}) \leq \mathfrak{a}$ hold for each $F_{\sigma\delta}$ P-ideal \mathcal{I} ? What about F_{σ} -ideals or analytic ideals?

Problem 3

Consider the natural extension of an AD family by an ω_1 -stage finite support iteration. For which "nicely" definable σ -ideals will the obtained MAD family be \mathbb{P}_l -indestructible?

Problem 4

Can we characterize \mathbb{P}_{l} -indestructibility of \mathcal{J} -MAD families for proper \mathbb{P}_{l} 's with the CRN and F_{σ} ideals or $F_{\sigma\delta}$ P-ideals (or even for analytic ideals)?

Thank you for your attention!

(and please feel free to solve my questions)

Barnabás Farkas (BME) Classical and idealized MAD families

ヘロト ヘ戸ト ヘヨト ヘヨト

æ