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Basic properties

Let X be an infinite set. If Z C P(X) is an ideal on X, then we
always assume that

[X]<* CZand X ¢ 7.
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Ideals generated by submeasures

Basic properties

Let X be an infinite set. If Z C P(X) is an ideal on X, then we
always assume that

[X]<* CZand X ¢ 7.

Anideal Z on w is
@ a P-ideal, if for all countable {A,: n € w} C Z, thereis a
BeZIsuchthat A, C*Bfornew (AC* B< |A\B| < w),
@ Borel (analytic, meager, null, etc.) if Z C P(w) ~ 2¥ is
Borel (analytic, meager, null, etc.) in the Cantor-space;
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Ideals generated by submeasures

Basic properties

Let X be an infinite set. If Z C P(X) is an ideal on X, then we
always assume that

[X]<* CZand X ¢ 7.

Anideal Z on w is
@ a P-ideal, if for all countable {A,: n € w} C Z, thereis a
BeZIsuchthat A, C*Bfornew (AC* B< |A\B| < w),
@ Borel (analytic, meager, null, etc.) if Z C P(w) ~ 2¥ is
Borel (analytic, meager, null, etc.) in the Cantor-space;
o tallifvV X € [w]* ZN[X]¥ # 0.
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Examples

Summable ideals

Ifh:w—(0,00)and ), .. h(n) = oo, then the summable ideal
genarated by h:

Ih_{Agw:Zh(n)<oo}.

neA
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genarated by h:

Ih_{Agw:Zh(n)<oo}.

neA
Inis an F, P-ideal.

Barnabas Farkas (BME) Classical and idealized MAD families



Ideals on w .
Basics and examples

Ideals generated by submeasures

Examples

Summable ideals
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genarated by h:
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Examples

Ifh:w—(0,00)and ), .. h(n) = oo, then the summable ideal
genarated by h:

Ih_{Agw:Zh(n)<oo}.

neA
ZInis an F, P-ideal. Z, is tall <= lim h(n) = 0.

n—oo

Density ideals

Let ii = (un : N € w) be a sequence of measures on w with pairwise
disjoint finite supports (P,), and assume limsup,,_, .. tn(Pn) > 0.
Then the density ideal associated to ji:

Zz= {A Cw: lim (AN Py) = o}.
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Ifh:w—(0,00)and ), .. h(n) = oo, then the summable ideal
genarated by h:

Ih_{Agw:Zh(n)<oo}.

neA
ZInis an F, P-ideal. Z, is tall <= lim h(n) = 0.

n—oo

Density ideals

Let ii = (un : N € w) be a sequence of measures on w with pairwise
disjoint finite supports (P,), and assume limsup,,_, .. tn(Pn) > 0.
Then the density ideal associated to ji:

Zz= {A Cw: lim (AN Py) = o}.

Z;is an F,s P-ideal. Zzis tall <= lim max pn({i}) = 0.

n—oo jeP,
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Ideals generated by submeasures

Submeasures on w

A function ¢ : P(w) — [0, 0] is a submeasure on w if
(1) ¢(@) = 0;

(2) XCYCw= p(X) <e(Y);

B) X, YCw=p(XUY)<p(X)+¢(Y);

(4)

4) p({n}) < oo foreach n € w.
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Submeasures on w

A function ¢ : P(w) — [0, 0] is a submeasure on w if
(1) ¢(@) = 0;

(2) XS Y Cw=o(X) <o(Y);

(B) X, Y Cw=o(XUY)<p(X)+¢(Y);

(4) ¢({n}) < oo foreach n € w.

v is lower semicontinuous (Isc) if

(5) ¢(X) =limp_o (X N n) for each X C w.
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Ideals generated by submeasures

Submeasures on w

Definton ... |
A function ¢ : P(w) — [0, 0] is a submeasure on w if
(1) ¢(@) = 0;
(2) XS Y Cw=o(X) <o(Y);
(B) X, Y Cw=o(XUY)<p(X)+¢(Y);
(4) ¢({n}) < oo foreach n € w.
v is lower semicontinuous (Isc) if
(5) ¢(X) =limp_o (X N n) for each X C w.

Lsc submeasures are o-subadditive as well (that is,
P(Unew An) < Yone, 9(An) if An C w).
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Barnabas Farkas (BME) Classical



Ideals on w )
Basics and examples

Ideals generated by submeasures

Fin(¢) and Exh(yp)

We can associate two ideals to an Isc submeasure ¢:

Fin(p) ={X Cw: ¢(X) < o},
Exh(p) = {X Cw: nli_}moo ¢(X\n) =0}.
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We can associate two ideals to an Isc submeasure ¢:

Fin(M) ={X Cw:p(X) <},
Exh(p) = {X Cw: |i_>mOo ¢(X\n) =0}.

Fin(y) is an F, ideal and Exh(yp) is an F,; P-ideal.
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We can associate two ideals to an Isc submeasure ¢:

Fin(M) ={X Cw:p(X) <},
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Ideals generated by submeasures

Fin(¢) and Exh(yp)

We can associate two ideals to an Isc submeasure ¢:

Fin(M) ={X Cw:p(X) <},
Exh(p) = {X Cw: IimOo ¢(X\n) =0}.

Fin(y) is an F, ideal and Exh(yp) is an F,; P-ideal.
Notation: || X||, = im0 ©(X\N).
Remark: Exh(yp) is tall <= limp_,» ¢({n}) = 0.

Theorem (Mazur, Solecki)

Let Z be an ideal on w.
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Fin(¢) and Exh(yp)

We can associate two ideals to an Isc submeasure ¢:

Fin(M) ={X Cw:p(X) <},
Exh(p) = {X Cw: IimOo ¢(X\n) =0}.

Fin(y) is an F, ideal and Exh(yp) is an F,; P-ideal.
Notation: || X||, = im0 ©(X\N).
Remark: Exh(yp) is tall <= limp_,» ¢({n}) = 0.

Theorem (Mazur, Solecki)

Let Z be an ideal on w.
@ Zisan F, ideal <= T = Fin(yp) for some Isc ¢.
@ 7 is an analytic P-ideal <= Z = Exh(y) for some Isc .

Barnabas Farkas (BME) Classical and idealized MAD families



Ideals on w )
Basics and examples

Ideals generated by submeasures

Fin(¢) and Exh(yp)

We can associate two ideals to an Isc submeasure ¢:

Fin(M) ={X Cw:p(X) <},
Exh(p) = {X Cw: IimOo ¢(X\n) =0}.

Fin(y) is an F, ideal and Exh(yp) is an F,; P-ideal.
Notation: || X||, = im0 ©(X\N).
Remark: Exh(yp) is tall <= limp_,» ¢({n}) = 0.

Theorem (Mazur, Solecki)

Let Z be an ideal on w.
@ Zisan F, ideal <= T = Fin(yp) for some Isc ¢.
@ 7 is an analytic P-ideal <= Z = Exh(y) for some Isc .
@ Zis an F, P-ideal <= 7 = Fin(y) = Exh(y) for some Isc ¢.
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Ideals on w

Basics and examples
Ideals generated by submeasures

Examples

Summable ideals
Tp = Fin(pp) = Exh(pp) where pp(A) = 3 ,ca h(n).

Remark (Farah)
There are F, P-ideals which are not summable.

Density ideals
Z; = Exh(p;) where p;(A) = suppe,, in(AN Pp).
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Z-MAD families: a(Z) and a(Z)
Let Z be an ideal on w. An infinite(!) A C Zt = P(w)\Z family is

@ Z-almost-disjoint (Z-AD) if the intersection of any two distinct
elements of A is contained in Z;
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Z-MAD families: a(Z) and a(Z)
Let Z be an ideal on w. An infinite(!) A C Zt = P(w)\Z family is

@ Z-almost-disjoint (Z-AD) if the intersection of any two distinct
elements of A is contained in Z;

@ maximal ZT-almost-disjoint (Z-MAD) if for all X € Z+ there is an
Ae Asuchthat XNAeZt.
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Z-MAD families: a(Z) and a(Z)
Let Z be an ideal on w. An infinite(!) A C Zt = P(w)\Z family is

@ Z-almost-disjoint (Z-AD) if the intersection of any two distinct
elements of A is contained in Z;

@ maximal ZT-almost-disjoint (Z-MAD) if for all X € Z+ there is an
Ae Asuchthat XNAeZt.

Let a(Z) be the minimal cardinality of an Z-MAD family.
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Z-MAD families: a(Z) and a(Z)
Let Z be an ideal on w. An infinite(!) A C Zt = P(w)\Z family is

@ Z-almost-disjoint (Z-AD) if the intersection of any two distinct
elements of A is contained in Z;

@ maximal ZT-almost-disjoint (Z-MAD) if for all X € Z+ there is an
Ae Asuchthat XNAeZt.

Let a(Z) be the minimal cardinality of an Z-MAD family.
Proposition (F.-Soukup)

a(Z) > w for each F, ideal Z but a(Z;) = w for tall density ideals.
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Let Z be an ideal on w. An infinite(!) A C Tt = P(w)\Z family is
@ Z-almost-disjoint (Z-AD) if the intersection of any two distinct
elements of A is contained in Z;

@ maximal ZT-almost-disjoint (Z-MAD) if for all X € Z+ there is an
Ae Asuchthat XNAeZt.

Let a(Z) be the minimal cardinality of an Z-MAD family.
Proposition (F.-Soukup)

a(Z) > w for each F, ideal Z but a(Z;) = w for tall density ideals.

There are Z-AD families of cardinality ¢ for each analytic ideal Z.
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Z-MAD families: a(Z) and a(Z)

Let Z be an ideal on w. An infinite(!) A C Tt = P(w)\Z family is
@ Z-almost-disjoint (Z-AD) if the intersection of any two distinct
elements of A is contained in Z;

@ maximal ZT-almost-disjoint (Z-MAD) if for all X € Z+ there is an
Ae Asuchthat XNAeZt.

Let a(Z) be the minimal cardinality of an Z-MAD family.
Proposition (F.-Soukup)

a(Z) > w for each F, ideal Z but a(Z;) = w for tall density ideals.

There are Z-AD families of cardinality ¢ for each analytic ideal Z.

Let a(Z) be the minimal uncountable cardinality of an Z-MAD family.
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Z-MAD families: a(Z) and a(Z)
Let Z be an ideal on w. An infinite(!) A C Zt = P(w)\Z family is

@ Z-almost-disjoint (Z-AD) if the intersection of any two distinct
elements of A is contained in Z;

@ maximal ZT-almost-disjoint (Z-MAD) if for all X € Z+ there is an
Ae Asuchthat XNAeZt.
Let a(Z) be the minimal cardinality of an Z-MAD family.

Proposition (F.-Soukup)

a(Z) > w for each F, ideal Z but a(Z;) = w for tall density ideals.

There are Z-AD families of cardinality ¢ for each analytic ideal Z.

Let a(Z) be the minimal uncountable cardinality of an Z-MAD family.

Proposition (F.-Soukup) — Lower and upper bounds for a(Z)

b < a(Z) for each F,s P-ideal Z (but not for all F,, ideals (Brendle)),
and a(Z;) < a for each density ideal Z;.
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Forcing-indestructibility under CH

Barnabas Farkas (BME) Classical and idealized MAD families



The Z-almost-disjointness number

Z-MAD families: cardinality and indestructibility Forcing-indestructibility

Forcing-indestructibility under CH

If Z is analytic, then an Z-MAD family A is P-indestructible if IFp"“ A is
Z-MAD”.
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The Z-almost-disjointness number
Forcing-indestructibility

Z-MAD families: cardinality and indestructibility

Forcing-indestructibility under CH

If Z is analytic, then an Z-MAD family A is P-indestructible if IFp"“ A is
Z-MAD”.

Observation

If Z is a Borel ideal, then being a countable Z-MAD family is a M}
property so it is absolute for transitive models.
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Z-MAD families: cardinality and indestructibility

Forcing-indestructibility under CH

If Z is analytic, then an Z-MAD family A is P-indestructible if IFp"“ A is
Z-MAD”.

If Z is a Borel ideal, then being a countable Z-MAD family is a M}
property so it is absolute for transitive models.

|

Fact

If Z is an F,s P-ideal and P adds dominating reals, then P destroys all
uncountable Z-MAD families.

A\
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Forcing-indestructibility under CH

If Z is analytic, then an Z-MAD family A is P-indestructible if IFp"“ A is
Z-MAD”.

If Z is a Borel ideal, then being a countable Z-MAD family is a M}
property so it is absolute for transitive models.

Fact

|

If Z is an F,s P-ideal and P adds dominating reals, then P destroys all
uncountable Z-MAD families. (It is not true for all F, ideals! (Brendle))

v
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Z-MAD families: cardinality and indestructibility

Forcing-indestructibility under CH

If Z is analytic, then an Z-MAD family A is P-indestructible if IFp"“ A is
Z-MAD”.

If Z is a Borel ideal, then being a countable Z-MAD family is a M}
property so it is absolute for transitive models.

If Z is an F,s P-ideal and P adds dominating reals, then P destroys all
uncountable Z-MAD families. (It is not true for all F, ideals! (Brendle))

Theorem (Kunen)

CH implies that there exist Cohen- and random-indestructible MAD
families.
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Forcing-indestructibility under CH

If Z is analytic, then an Z-MAD family A is P-indestructible if IFp"“ A is
Z-MAD”.

If Z is a Borel ideal, then being a countable Z-MAD family is a M}
property so it is absolute for transitive models.

If Z is an F,s P-ideal and P adds dominating reals, then P destroys all
uncountable Z-MAD families. (It is not true for all F, ideals! (Brendle))

Theorem (Kunen)

CH implies that there exist Cohen- and random-indestructible MAD
families.

Theorem (F., Soukup)

CH implies that there exist uncountable Cohen- and random-
indestructible Z-MAD families for all F, ideals and F,s P-ideals.
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Z-MAD families: cardinality and indestructibility Forcing-indestructibility

Motivation and a general question
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Z-MAD families: cardinality and indestructibility Forcing-indestructibility

Motivation and a general question

Theorem (Fuchino, Geschke, Soukup)

In VC there are AD families A and B such that, in any generic
extension of V¢ by a ccc forcing notion P € V

@ A cannot be extended to a Cohen-indestructible MAD family,

@ B cannot be extended to a random-indestructible MAD family.
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Z-MAD families: cardinality and indestructibility

Motivation and a general question

Theorem (Fuchino, Geschke, Soukup)

In VC there are AD families A and B such that, in any generic
extension of V¢ by a ccc forcing notion P € V

@ A cannot be extended to a Cohen-indestructible MAD family,

@ B cannot be extended to a random-indestructible MAD family.

Question (Soukup)

Can any AD family be extended to a Cohen- (or random-)
indestructible MAD family in a ccc forcing extension?
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Z-MAD families: cardinality and indestructibility Forcing-indestructibility

Motivation and a general question

Theorem (Fuchino, Geschke, Soukup)

In VC there are AD families A and B such that, in any generic
extension of V¢ by a ccc forcing notion P € V

@ A cannot be extended to a Cohen-indestructible MAD family,

@ B cannot be extended to a random-indestructible MAD family.

Question (Soukup)

Can any AD family be extended to a Cohen- (or random-)
indestructible MAD family in a ccc forcing extension?

Idealized question

Assume Z is an analytic ideal on w, A is a Z-AD family, and let F be a
forcing notion. Can A be extended to an F-indestructible Z-MAD
family in a ccc forcing extension?
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F-indestructible extensions for F € V
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Z-MAD families: cardinality and indestructibility Forcing-indestructibility

F-indestructible extensions for F € V

Assume F is a forcing notion, Z is an F, ideal or an F,s P-ideal, and
A is an Z-AD family.
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Z-MAD families: cardinality and indestructibility Forcing-indestructibility

F-indestructible extensions for F € V

Assume F is a forcing notion, Z is an F, ideal or an F,s P-ideal, and
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extended to an F-indestructible Z-MAD family.

Barnabas Farkas (BME) Classical and idealized MAD families



Z-MAD families: cardinality and indestructibility lgrecé gq:gg;ssftfu'?t?;}:&ess BT

F-indestructible extensions for F € V

Assume F is a forcing notion, Z is an F, ideal or an F,s P-ideal, and
A is an Z-AD family. Then in a ccc forcing extension A can be
extended to an F-indestructible Z-MAD family.

Proof for F,s P-ideals: Let Z = Exh(yp). First we need the following

Barnabas Farkas (BME) Classical and idealized MAD families



Z-MAD families: cardinality and indestructibility lgrecé gq:gg;ssftfu'?t?;}:&ess BT

F-indestructible extensions for F € V

Assume F is a forcing notion, Z is an F, ideal or an F,s P-ideal, and
A is an Z-AD family. Then in a ccc forcing extension A can be
extended to an F-indestructible Z-MAD family.

Proof for F,s P-ideals: Let Z = Exh(y). First we need the following
Claim: The formula ®(F, p, X, ¢, €) in the LST which says that

Barnabas Farkas (BME) Classical and idealized MAD families



Z-MAD families: cardinality and indestructibility lgrecé ga::;:jfétfu'?t?;‘l:&ess BT

F-indestructible extensions for F € V

Assume F is a forcing notion, Z is an F, ideal or an F,s P-ideal, and
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Proof for F,s P-ideals: Let Z = Exh(y). First we need the following
Claim: The formula ®(F, p, X, ¢, €) in the LST which says that

F is a forcing notion, p € F, X is a nice F-name for a subset of w,
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Barnabas Farkas (BME) Classical and idealized MAD families



Z-MAD families: cardinality and indestructibility lgrecé ga::;:jfétfu'?t?;‘l:&ess BT

F-indestructible extensions for F € V

Assume F is a forcing notion, Z is an F, ideal or an F,s P-ideal, and
A is an Z-AD family. Then in a ccc forcing extension A can be
extended to an F-indestructible Z-MAD family.

Proof for F,s P-ideals: Let Z = Exh(y). First we need the following
Claim: The formula ®(F, p, X, ¢, €) in the LST which says that
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Assume F is a forcing notion, Z is an F, ideal or an F,s P-ideal, and
A is an Z-AD family. Then in a ccc forcing extension A can be
extended to an F-indestructible Z-MAD family.

Proof for F,s P-ideals: Let Z = Exh(y). First we need the following
Claim: The formula ®(F, p, X, ¢, €) in the LST which says that

F is a forcing notion, p € F, X is a nice F-name for a subset of w,
pis anlscsubm. onw, e € R, and p IFr ¢(X) > € (or p I || X||, > €)

is absolute for transitive models. (Proof: Use antichains....)
Let x = |F|. We will define a x*-stage finite support iteration of ccc
forcing notions and extend .4 by one element at each stage.
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Let x = |F|. We will define a x*-stage finite support iteration of ccc
forcing notions and extend .4 by one element at each stage.

At stage each stage we will work with a condition p from F such that
each p € F appears in cofinally many stages in ™.
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Let x = |F|. We will define a x*-stage finite support iteration of ccc
forcing notions and extend .4 by one element at each stage.

At stage each stage we will work with a condition p from F such that
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General stage: We have a p € IF and an Z-AD family .A. We want
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Forcing-indestructibility

IF pIFz*|| X||, >cand YV Ac AXNAcZ” forsome X and ¢ > 0,
THEN Ve Eplrgs XNS eI,
Let X be the set of all nice F-names for a subset of w from the IF part

with a fixed € = ¢(X).
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Z-MAD families: cardinality and indestructibility

IF pIFz*|| X||, >cand YV Ac AXNAcZ” forsome X and ¢ > 0,
THEN Ve Eplrgs XNS eI,

Let X' be the set of all nice F-names for a subset of w from the IF part
with a fixed € = ¢(X).

Let Q be the following forcing notion: (s,n, F,B,Y) € Q iff
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Forcing-indestructibility

IF pIFz*|| X||, >cand YV Ac AXNAcZ” forsome X and ¢ > 0,
THEN Ve Eplrgs XNS eI,
Let X be the set of all nice F-names for a subset of w from the IF part

with a fixed € = ¢(X).
Let Q be the following forcing notion: (s,n, F,B,Y) € Q iff

sCnew Fel[{geF:q<p}xw]™, Bel[A<, and Y e [X]<~.
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Forcing-indestructibility

IF pIFz*|| X||, >cand YV Ac AXNAcZ” forsome X and ¢ > 0,
THEN Ve Eplrgs XNS eI,
Let X be the set of all nice F-names for a subset of w from the IF part

with a fixed € = ¢(X).

Let Q be the following forcing notion: (s,n, F,B,Y) € Q iff
sCnew Fel[{geF:q<p}xw]™, Bel[A<, and Y e [X]<~.
(s1,m, F1,B1,Y1) < (So, Mo, Fo, Bo, Vo) iff
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Forcing-indestructibility

IF pIFz*|| X||, >cand YV Ac AXNAcZ” forsome X and ¢ > 0,
THEN Ve Eplrgs XNS eI,
Let X be the set of all nice F-names for a subset of w from the IF part

with a fixed € = ¢(X).
Let Q be the following forcing notion: (s,n, F,B,Y) € Q iff

sCnew Fel[{geF:q<p}xw]™, Bel[A<, and Y e [X]<~.
(81, M, F1,B1,Y1) < (S0, No, Fo, Bo, Vo) iff

(@ m > ng, 81NNy = So, F1 2 Fo, B1 2 By, and Yy 2 Vo;

(b) (s1\so) "UBo = 0;

(©) Y (g, k) € Fo¥ X €Yo 3r<eqrire ¢((s1\k) N X) > &(X).
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IF pIFz*|| X||, >cand YV Ac AXNAcZ” forsome X and ¢ > 0,
THEN Ve Eplrgs XNS eI,
Let X be the set of all nice F-names for a subset of w from the IF part

with a fixed € = ¢(X).
Let Q be the following forcing notion: (s,n, F,B,Y) € Q iff

sCnew Fel[{geF:q<p}xw]™, Bel[A<, and Y e [X]<~.
(81, M, F1,B1,Y1) < (S0, No, Fo, Bo, Vo) iff

(@ m > ng, 81NNy = So, F1 2 Fo, B1 2 By, and Yy 2 Vo;

(b) (s1\so) "UBo = 0;

(©) Y (g, k) € Fo¥ X €Yo 3r<eqrire ¢((s1\k) N X) > &(X).

Q is o-centered.
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IF pIFz*|| X||, >cand YV Ac AXNAcZ” forsome X and ¢ > 0,
THEN Ve Eplrgs XNS eI,
Let X be the set of all nice F-names for a subset of w from the IF part

with a fixed € = ¢(X).
Let Q be the following forcing notion: (s,n, F,B,Y) € Q iff

sCnew Fel[{geF:q<p}xw]™, Bel[A<, and Y e [X]<~.
(81, M, F1,B1,Y1) < (S0, No, Fo, Bo, Vo) iff

(@ m > ng, 81NNy = So, F1 2 Fo, B1 2 By, and Yy 2 Vo;

(b) (s1\so) "UBo = 0;

(©) Y (g, k) € Fo¥ X €Yo 3r<eqrire ¢((s1\k) N X) > &(X).

Q is o-centered. Let S be the union of the first coordinates of
conditions in the Q-generic filter.
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IF pIFz*|| X||, >cand YV Ac AXNAcZ” forsome X and ¢ > 0,
THEN Ve Eplrgs XNS eI,
Let X' be the set of all nice F-names for a subset of w from the IF part
with a fixed € = ¢(X).
Let Q be the following forcing notion: (s,n, F,B,Y) € Q iff
sCnew Fel[{geF:q<p}xw]™, Bel[A<, and Y e [X]<~.
(s1,m, F1,B1, Y1) < (S0, Mo, Fo, Bo, Jo) iff

(@ ny > ng, 81NNy =S, F1 2 Fo, By 2 By, and Yy 2 Vo;

b) (31\80) n UBO =0

(©) Y (g, k) € Fo¥ X €Yo 3r<eqrire ¢((s1\k) N X) > &(X).
Qs o-centered. Let S be the union of the first coordinates of
conditions in the Q-generic filter.

Using simple density arguments and the Claim above, we obtain that
V@ =AU {S}is an Z-AD family and V X € X plFg XN S e T+
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Forcing-indestructibility

IF pIFz*|| X||, >cand YV Ac AXNAcZ” forsome X and ¢ > 0,
THEN Ve Eplrgs XNS eI,
Let X' be the set of all nice F-names for a subset of w from the IF part
with a fixed € = ¢(X).
Let Q be the following forcing notion: (s,n, F,B,Y) € Q iff
sCnew Fel[{geF:q<p}xw]™, Bel[A<, and Y e [X]<~.
(s1,m, F1,B1, Y1) < (S0, Mo, Fo, Bo, Jo) iff

(@ ny > ng, 81NNy =S, F1 2 Fo, By 2 By, and Yy 2 Vo;

b) (31\80) n UBO =0

(©) Y (g, k) € Fo¥ X €Yo 3r<eqrire ¢((s1\k) N X) > &(X).
Qs o-centered. Let S be the union of the first coordinates of
conditions in the Q-generic filter.

Using simple density arguments and the Claim above, we obtain that
V@ =AU {S}is an Z-AD family and V X € X plFg XN S e T+

The x*-stage iteration kills all possible X in the final model which
could destroy our extended Z-AD family.
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A theorem of Hrusak and Zapletal
Random-indestructible extensions of MAD families

P -indestructible extensions of MAD families

The Katétov (pre)order

Definition
If Z and J are ideals on w (or on countable sets) then Z <x J
iff there is an F € w* suchthatY Ac Z F~'[A] € J.
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P -indestructible extensions of MAD families

The Katétov (pre)order

Definition
If Z and J are ideals on w (or on countable sets) then Z <x J
iff there is an F € w* suchthatY Ac Z F~'[A] € J.

The Katétov order is upward directed and ¢*-downward
directed (even on tall ideals). Fin = [w]<“ is a <x-minimal
element, moreover Z <k Fin iff Z is tall.
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P -indestructible extensions of MAD families

The Katétov (pre)order

Definition
If Z and J are ideals on w (or on countable sets) then Z <x J
iff there is an F € w* suchthatY Ac Z F~'[A] € J.

The Katétov order is upward directed and ¢*-downward
directed (even on tall ideals). Fin = [w]<“ is a <x-minimal
element, moreover Z <k Fin iff Z is tall.

Shoenfield’s Absoluteness Theorem implies that Z <k 7 for
Borel ideals is absolute between any pair of transitive models
M C N with w¥ C M.
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Barnabas Farkas (BME) Classical and idealized MAD families



A theorem of Hrusak and Zapletal

. . . - Random-indestructible ext f MAD famili
P -indestructible extensions of MAD families ANCOMHNAESIUCIDIE EXIENSIoNS 0 AMIES

Characterizing forcing-indestructibility

Foraset A C w<¥ (or A C 2<¥) its Gs-closure is
Gs(A)={few“(or2¥):3*° nf | ne A}.
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Characterizing forcing-indestructibility

Foraset A C w<¥ (or A C 2<¥) its Gs-closure is
Gs(A)={few“(or2¥):3*° nf | ne A}.
The trace of a o-ideal / on w* (or on 2¢):
tr()= {A C w<¥(or 2<¥) : Gs(A) € I}.
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Foraset A C w<¥ (or A C 2<¥) its Gs-closure is
Gs(A)={few“(or2¥):3*° nf | ne A}.
The trace of a o-ideal / on w* (or on 2¢):
tr()= {A C w<¥(or 2<¥) : Gs(A) € I}.
Clearly, tr(/) is an ideal in w<“ (or on 2<¥).
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Characterizing forcing-indestructibility

Foraset A C w<¥ (or A C 2<¥) its Gs-closure is
Gs(A)={few“(or2¥):3*° nf | ne A}.
The trace of a o-ideal / on w* (or on 2¢):
tr()= {A C w<¥(or 2<¥) : Gs(A) € I}.
Clearly, tr(/) is an ideal in w<“ (or on 2<¥).

Theorem (Hru$ak-Zapletal)

Let / be a o-ideal on w® (or on 2*) and assume that

IP; = Borel(w®“)/! is proper with the continuous reading of
names (CRN). If A is a MAD family on w, then the following are
equivalent:

(1) Thereis a B € P, such that B IF*A is not maximal”.

(2) Thereis an X € tr(/)* such that A <k tr(/) | X.
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B-indestructible extensions
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P,-indestructible extensions of MAD families Random-indestructible extensions of MAD families

B-indestructible extensions

Cohen-indestructibility = Miller-indestructibility = Sacks-
indestructibility (of MAD families) so our theorem about
F-indestructible extensions of Z-AD families also works for the Miller-
and Sacks-forcing if Z = [w]<*.
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P -indestructible extensions of MAD families

B-indestructible extensions

Corollary

Cohen-indestructibility = Miller-indestructibility = Sacks-
indestructibility (of MAD families) so our theorem about
F-indestructible extensions of Z-AD families also works for the Miller-
and Sacks-forcing if Z = [w]<*.

Corollary (F.)

Assume A is an AD family. Then A can be extended to a
random-indestructible MAD family in a ccc forcing extension.
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P -indestructible extensions of MAD families

B-indestructible extensions

Corollary

Cohen-indestructibility = Miller-indestructibility = Sacks-
indestructibility (of MAD families) so our theorem about
F-indestructible extensions of Z-AD families also works for the Miller-
and Sacks-forcing if Z = [w]<*.

Corollary (F.)

Assume A is an AD family. Then A can be extended to a
random-indestructible MAD family in a ccc forcing extension.

Proof: “The most natural” iterated extension of A works!
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P -indestructible extensions of MAD families

B-indestructible extensions

Corollary

Cohen-indestructibility = Miller-indestructibility = Sacks-
indestructibility (of MAD families) so our theorem about
F-indestructible extensions of Z-AD families also works for the Miller-
and Sacks-forcing if Z = [w]<*.

Corollary (F.)

Assume A is an AD family. Then A can be extended to a
random-indestructible MAD family in a ccc forcing extension.

Proof: “The most natural” iterated extension of .4 works!

We will define an wq-stage finite support iteration of ccc forcing
notions and extend A with one element at each stage by the following
forcing notion:
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P -indestructible extensions of MAD families

B-indestructible extensions

Corollary

Cohen-indestructibility = Miller-indestructibility = Sacks-
indestructibility (of MAD families) so our theorem about
F-indestructible extensions of Z-AD families also works for the Miller-
and Sacks-forcing if Z = [w]<*.

Corollary (F.)

Assume A is an AD family. Then A can be extended to a
random-indestructible MAD family in a ccc forcing extension.

Proof: “The most natural” iterated extension of .4 works!

We will define an wq-stage finite support iteration of ccc forcing
notions and extend A with one element at each stage by the following
forcing notion: (s, n,B) € Qiff s C n€ wand B € [A]<¥,

(So, N, Bo) < (S1 , Ny, 81) iff

(@) no > ny, soNny = sy and By 2 B;
(b) (so\s1) "UB1 = 0.
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P -indestructible extensions of MAD families

Q is clearly o-centered.
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P -indestructible extensions of MAD families

Q is clearly o-centered. Let S be the union of the first coordinates of
conditions in the Q-generic filter.
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Q s clearly o-centered. Let S be the union of the first coordinates of
conditions in the Q-generic filter. Then I-¢“A U {S} is an AD family.”
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P -indestructible extensions of MAD families

Qis clearly o-centered. Let S be the union of the first coordinates of
conditions in the Q-generic filter. Then I-¢“A U {S} is an AD family.”
Assume that X = {xx : k € w} € P(2<¥), e = A(Gs(X)) > 0, and

F:X —wsuchthatV Ac A F'[Al € u(N) | X.
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Random-indestructible extensions of MAD families

P -indestructible extensions of MAD families

Qis clearly o-centered. Let S be the union of the first coordinates of
conditions in the Q-generic filter. Then I-¢“A U {S} is an AD family.”
Assume that X = {xx : k € w} € P(2<¥), e = A(Gs(X)) > 0, and

F:X —wsuchthatV Ac A F'[Al € u(N) | X.

We claim that V2 |= A\(G5(F~'[S])) =  so in V2 F cannot show that

AU{S} <k r(W) | X.
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P -indestructible extensions of MAD families

Qis clearly o-centered. Let S be the union of the first coordinates of
conditions in the Q-generic filter. Then I-¢“A U {S} is an AD family.”
Assume that X = {xx : k € w} € P(2<¥), e = A(Gs(X)) > 0, and

F:X —wsuchthatV Ac A F'[Al € u(N) | X.

We claim that V2 |= A\(G5(F~'[S])) =  so in V2 F cannot show that
AU{S} <k r(W) | X.

If p=(sP,n°,BP) € Qthen

Gs(F'18) = N {f €2°:m>k,F(xm) € S, and xpm C f}.
kew

We have to show that the measure of the set after the intersection is
at least e
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P -indestructible extensions of MAD families

Qis clearly o-centered. Let S be the union of the first coordinates of
conditions in the Q-generic filter. Then I-¢“A U {S} is an AD family.”
Assume that X = {xx : k € w} € P(2<¥), e = A(Gs(X)) > 0, and

F:X —wsuchthatV Ac A F'[Al € u(N) | X.

We claim that V2 |= A\(G5(F~'[S])) =  so in V2 F cannot show that
AU{S} <k r(W) | X.

If p=(sP,n°,BP) € Qthen

Gs(F'18) = N {f €2 :m>k,F(xm) € S, and xm C f}.

kew

We have to show that the measure of the set after the intersection is
at least ¢ so that the following sets are dense in Q:

Dy ={pecQ:\{fe2?:m>k,F(xn) € s"})>d}

where 6 < € and k € w. It is followed by our assumption on F.
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P -indestructible extensions of MAD families

Qis clearly o-centered. Let S be the union of the first coordinates of
conditions in the Q-generic filter. Then I-¢“A U {S} is an AD family.”
Assume that X = {xx : k € w} € P(2<¥), e = A(Gs(X)) > 0, and

F:X —wsuchthatV Ac A F'[Al € u(N) | X.

We claim that V2 |= A\(G5(F~'[S])) =  so in V2 F cannot show that
AU{S} <k r(W) | X.

If p=(sP,n°,BP) € Qthen

Gs(F'18) = N {f €2°:m>k,F(xm) € S, and xpm C f}.
kew

We have to show that the measure of the set after the intersection is
at least ¢ so that the following sets are dense in Q:

Dy ={pecQ:\{fe2?:m>k,F(xn) € s"})>d}

where 6 < € and k € w. It is followed by our assumption on F.
The wq-stage iteration kills all possible Katétov-reduction of our family
to tr(N\') | X for some X € tr(N)™.
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Problems

Problem 1 (maybe easy)

Can we characterize analytic ideals which has countable Z-MAD
families?
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Problem 1 (maybe easy)

Can we characterize analytic ideals which has countable Z-MAD
families? )
Problem 2

Does a(Z) < a hold for each F,; P-ideal Z? What about F,-ideals or
analytic ideals?
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Problems

Problem 1 (maybe easy)

Can we characterize analytic ideals which has countable Z-MAD
families?

Problem 2

Does a(Z) < a hold for each F,; P-ideal Z? What about F,-ideals or
analytic ideals?

Problem 3

Consider the natural extension of an AD family by an w1-stage finite
support iteration. For which “nicely” definable o-ideals will the
obtained MAD family be P-indestructible?
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Problems

Problem 1 (maybe easy)

Can we characterize analytic ideals which has countable Z-MAD
families?

Problem 2

Does a(Z) < a hold for each F,; P-ideal Z? What about F,-ideals or
analytic ideals?

Problem 3

Consider the natural extension of an AD family by an w1-stage finite
support iteration. For which “nicely” definable o-ideals will the
obtained MAD family be P-indestructible?

Problem 4

Can we characterize P;-indestructibility of 7-MAD families for proper
P,’s with the CRN and F, ideals or F,s P-ideals (or even for analytic
ideals)?
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Thank you for your attention!

(and please feel free to solve my questions®)
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