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Basic properties

Let X be an infinite set. If I ⊆ P(X ) is an ideal on X , then we
always assume that

[X ]<ω ⊆ I and X /∈ I.

An ideal I on ω is
a P-ideal , if for all countable {An : n ∈ ω} ⊆ I, there is a
B ∈ I such that An ⊆∗ B for n ∈ ω (A ⊆∗ B ⇔ |A\B| < ω),
Borel (analytic, meager, null, etc.) if I ⊆ P(ω) ' 2ω is
Borel (analytic, meager, null, etc.) in the Cantor-space;
tall if ∀ X ∈ [ω]ω I ∩ [X ]ω 6= ∅.
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Examples

Summable ideals

If h : ω → (0,∞) and
∑

n∈ω h(n) =∞, then the summable ideal
genarated by h:

Ih =

{
A ⊆ ω :

∑
n∈A

h(n) <∞
}
.

Ih is an Fσ P-ideal. Ih is tall ⇐⇒ lim
n→∞

h(n) = 0.

Density ideals

Let ~µ = 〈µn : n ∈ ω〉 be a sequence of measures on ω with pairwise
disjoint finite supports (Pn), and assume lim supn→∞ µn(Pn) > 0.
Then the density ideal associated to ~µ:

Z~µ =
{

A ⊆ ω : lim
n→∞

µn(A ∩ Pn) = 0
}
.

Z~µ is an Fσδ P-ideal. Z~µ is tall ⇐⇒ lim
n→∞

max
i∈Pn

µn({i}) = 0.
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Submeasures on ω

Definition
A function ϕ : P(ω)→ [0,∞] is a submeasure on ω if
(1) ϕ(∅) = 0;
(2) X ⊆ Y ⊆ ω ⇒ ϕ(X ) ≤ ϕ(Y );
(3) X ,Y ⊆ ω ⇒ ϕ(X ∪ Y ) ≤ ϕ(X ) + ϕ(Y );
(4) ϕ({n}) <∞ for each n ∈ ω.
ϕ is lower semicontinuous (lsc) if
(5) ϕ(X ) = limn→∞ ϕ(X ∩ n) for each X ⊆ ω.

Remark
Lsc submeasures are σ-subadditive as well (that is,
ϕ(
⋃

n∈ω An) ≤
∑

n∈ω ϕ(An) if An ⊆ ω).
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Fin(ϕ) and Exh(ϕ)

We can associate two ideals to an lsc submeasure ϕ:

Fin(ϕ) = {X ⊆ ω : ϕ(X ) <∞},
Exh(ϕ) =

{
X ⊆ ω : lim

n→∞
ϕ(X\n) = 0

}
.

Fin(ϕ) is an Fσ ideal and Exh(ϕ) is an Fσδ P-ideal.
Notation: ‖X‖ϕ = limn→∞ ϕ(X\n).
Remark: Exh(ϕ) is tall ⇐⇒ limn→∞ ϕ({n}) = 0.

Theorem (Mazur, Solecki)
Let I be an ideal on ω.

I is an Fσ ideal ⇐⇒ I = Fin(ϕ) for some lsc ϕ.
I is an analytic P-ideal ⇐⇒ I = Exh(ϕ) for some lsc ϕ.
I is an Fσ P-ideal ⇐⇒ I = Fin(ϕ) = Exh(ϕ) for some lsc ϕ.
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Ideals generated by submeasures
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Basics and examples
Ideals generated by submeasures

Examples

Summable ideals
Ih = Fin(ϕh) = Exh(ϕh) where ϕh(A) =

∑
n∈A h(n).

Remark (Farah)
There are Fσ P-ideals which are not summable.

Density ideals
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The I-almost-disjointness number
Forcing-indestructibility

I-MAD families: a(I) and ā(I)

Let I be an ideal on ω. An infinite(!) A ⊆ I+ = P(ω)\I family is

I-almost-disjoint (I-AD) if the intersection of any two distinct
elements of A is contained in I;

maximal I-almost-disjoint (I-MAD) if for all X ∈ I+ there is an
A ∈ A such that X ∩ A ∈ I+.

Let a(I) be the minimal cardinality of an I-MAD family.

Proposition (F.-Soukup)

a(I) > ω for each Fσ ideal I but a(Z~µ) = ω for tall density ideals.

Fact
There are I-AD families of cardinality c for each analytic ideal I.

Let ā(I) be the minimal uncountable cardinality of an I-MAD family.

Proposition (F.-Soukup) – Lower and upper bounds for ā(I)

b ≤ ā(I) for each Fσδ P-ideal I (but not for all Fσ ideals (Brendle)),
and ā(Z~µ) ≤ a for each density ideal Z~µ.
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The I-almost-disjointness number
Forcing-indestructibility

Forcing-indestructibility under CH

If I is analytic, then an I-MAD family A is P-indestructible if P“A is
I-MAD”.

Observation

If I is a Borel ideal, then being a countable I-MAD family is a Π1
1

property so it is absolute for transitive models.

Fact
If I is an Fσδ P-ideal and P adds dominating reals, then P destroys all
uncountable I-MAD families. (It is not true for all Fσ ideals! (Brendle))

Theorem (Kunen)

CH implies that there exist Cohen- and random-indestructible MAD
families.

Theorem (F., Soukup)

CH implies that there exist uncountable Cohen- and random-
indestructible I-MAD families for all Fσ ideals and Fσδ P-ideals.
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The I-almost-disjointness number
Forcing-indestructibility

Motivation and a general question

Theorem (Fuchino, Geschke, Soukup)

In VCω1 there are AD families A and B such that, in any generic
extension of VCω1 by a ccc forcing notion P ∈ V

A cannot be extended to a Cohen-indestructible MAD family,

B cannot be extended to a random-indestructible MAD family.

Question (Soukup)

Can any AD family be extended to a Cohen- (or random-)
indestructible MAD family in a ccc forcing extension?

Idealized question

Assume I is an analytic ideal on ω, A is a I-AD family, and let F be a
forcing notion. Can A be extended to an F-indestructible I-MAD
family in a ccc forcing extension?
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F-indestructible extensions for F ∈ V

Theorem (F.)

Assume F is a forcing notion, I is an Fσ ideal or an Fσδ P-ideal, and
A is an I-AD family. Then in a ccc forcing extension A can be
extended to an F-indestructible I-MAD family.

Proof for Fσδ P-ideals: Let I = Exh(ϕ). First we need the following
Claim: The formula Φ(F,p, Ẋ , ϕ, ε) in the LST which says that
F is a forcing notion, p ∈ F, Ẋ is a nice F-name for a subset of ω,

ϕ is an lsc subm. on ω, ε ∈ R, and p F ϕ(Ẋ ) > ε (or p F ‖Ẋ‖ϕ > ε)

is absolute for transitive models. (Proof: Use antichains....)
Let κ = |F|. We will define a κ+-stage finite support iteration of ccc
forcing notions and extend A by one element at each stage.
At stage each stage we will work with a condition p from F such that
each p ∈ F appears in cofinally many stages in κ+.
General stage: We have a p ∈ F and an I-AD family A. We want
define a Q and add an Ṡ ∈ I+ such that ∀ A ∈ A A ∩ Ṡ ∈ I and
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Barnabás Farkas (BME) Classical and idealized MAD families



Ideals on ω

I-MAD families: cardinality and indestructibility
PI -indestructible extensions of MAD families

The I-almost-disjointness number
Forcing-indestructibility

F-indestructible extensions for F ∈ V

Theorem (F.)

Assume F is a forcing notion, I is an Fσ ideal or an Fσδ P-ideal, and
A is an I-AD family. Then in a ccc forcing extension A can be
extended to an F-indestructible I-MAD family.

Proof for Fσδ P-ideals: Let I = Exh(ϕ). First we need the following
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Forcing-indestructibility

IF p F“‖Ẋ‖ϕ > ε and ∀ A ∈ A Ẋ ∩ A ∈ I” for some Ẋ and ε > 0,

THEN VQ |= p F Ẋ ∩ Ṡ ∈ I+.
Let X be the set of all nice F-names for a subset of ω from the IF part
with a fixed ε = ε(Ẋ ).
Let Q be the following forcing notion: (s,n,F ,B,Y) ∈ Q iff

s ⊆ n ∈ ω, F ∈
[
{q ∈ F : q ≤ p} × ω

]<ω, B ∈ [A]<ω, and Y ∈ [X ]<ω.
(s1,n1,F1,B1,Y1) < (s0,n0,F0,B0,Y0) iff

(a) n1 ≥ n0, s1 ∩ n0 = s0, F1 ⊇ F0, B1 ⊇ B0, and Y1 ⊇ Y0;

(b) (s1\s0) ∩
⋃
B0 = ∅;

(c) ∀ (q, k) ∈ F0 ∀ Ẋ ∈ Y0 ∃ r ≤F q r F ϕ
(
(s1\k) ∩ Ẋ

)
> ε(Ẋ ).

Q is σ-centered. Let Ṡ be the union of the first coordinates of
conditions in the Q-generic filter.
Using simple density arguments and the Claim above, we obtain that
VQ |=“A ∪ {Ṡ} is an I-AD family and ∀ Ẋ ∈ X p F Ẋ ∩ Ṡ ∈ I+”.
The κ+-stage iteration kills all possible Ẋ in the final model which
could destroy our extended I-AD family.
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The κ+-stage iteration kills all possible Ẋ in the final model which
could destroy our extended I-AD family.
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could destroy our extended I-AD family.

Barnabás Farkas (BME) Classical and idealized MAD families



Ideals on ω

I-MAD families: cardinality and indestructibility
PI -indestructible extensions of MAD families

A theorem of Hrušák and Zapletal
Random-indestructible extensions of MAD families

The Katětov (pre)order

Definition
If I and J are ideals on ω (or on countable sets) then I ≤K J
iff there is an F ∈ ωω such that ∀ A ∈ I F−1[A] ∈ J .

The Katětov order is upward directed and c+-downward
directed (even on tall ideals). Fin = [ω]<ω is a ≤K-minimal
element, moreover I �K Fin iff I is tall.

Fact
Shoenfield’s Absoluteness Theorem implies that I ≤K J for
Borel ideals is absolute between any pair of transitive models
M ⊆ N with ωN

1 ⊆ M.
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Characterizing forcing-indestructibility

For a set A ⊆ ω<ω (or A ⊆ 2<ω) its Gδ-closure is

Gδ(A) = {f ∈ ωω(or 2ω) : ∃∞ n f � n ∈ A}.

The trace of a σ-ideal I on ωω (or on 2ω):

tr(I)= {A ⊆ ω<ω(or 2<ω) : Gδ(A) ∈ I}.
Clearly, tr(I) is an ideal in ω<ω (or on 2<ω).

Theorem (Hrušák-Zapletal)
Let I be a σ-ideal on ωω (or on 2ω) and assume that
PI = Borel(ωω)/I is proper with the continuous reading of
names (CRN). If A is a MAD family on ω, then the following are
equivalent:
(1) There is a B ∈ PI such that B “A is not maximal”.
(2) There is an X ∈ tr(I)+ such that A ≤K tr(I) � X .
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B-indestructible extensions

Corollary

Cohen-indestructibility⇒ Miller-indestructibility⇒ Sacks-
indestructibility (of MAD families) so our theorem about
F-indestructible extensions of I-AD families also works for the Miller-
and Sacks-forcing if I = [ω]<ω.

Corollary (F.)

Assume A is an AD family. Then A can be extended to a
random-indestructible MAD family in a ccc forcing extension.

Proof: “The most natural” iterated extension of A works!
We will define an ω1-stage finite support iteration of ccc forcing
notions and extend A with one element at each stage by the following
forcing notion: (s,n,B) ∈ Q iff s ⊆ n ∈ ω and B ∈ [A]<ω,
(s0,n0,B0) ≤ (s1,n1,B1) iff

(a) n0 ≥ n1, s0 ∩ n1 = s1 and B0 ⊇ B1;

(b) (s0\s1) ∩
⋃
B1 = ∅.
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Q is clearly σ-centered.

Let Ṡ be the union of the first coordinates of
conditions in the Q-generic filter. Then Q“A ∪ {Ṡ} is an AD family.”
Assume that X = {xk : k ∈ ω} ∈ P(2<ω), ε = λ(Gδ(X )) > 0, and
F : X → ω such that ∀ A ∈ A F−1[A] ∈ tr(N ) � X .
We claim that VQ |= λ

(
Gδ(F−1[Ṡ])

)
= ε so in VQ F cannot show that

A ∪ {Ṡ} ≤K tr(N ) � X .
If p = (sp,np,Bp) ∈ Q then

Gδ(F−1[Ṡ]) =
⋂
k∈ω

{
f ∈ 2ω : m ≥ k ,F (xm) ∈ Ṡ, and xm ⊆ f

}
.

We have to show that the measure of the set after the intersection is
at least ε so that the following sets are dense in Q:

Dδ
k =

{
p ∈ Q : λ

(
{f ∈ 2ω : m ≥ k ,F (xm) ∈ sp}

)
> δ
}

where δ < ε and k ∈ ω. It is followed by our assumption on F .
The ω1-stage iteration kills all possible Katětov-reduction of our family
to tr(N ) � X for some X ∈ tr(N )+.
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}
.

We have to show that the measure of the set after the intersection is
at least ε so that the following sets are dense in Q:

Dδ
k =

{
p ∈ Q : λ

(
{f ∈ 2ω : m ≥ k ,F (xm) ∈ sp}

)
> δ
}

where δ < ε and k ∈ ω. It is followed by our assumption on F .
The ω1-stage iteration kills all possible Katětov-reduction of our family
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)
= ε so in VQ F cannot show that
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⋂
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We have to show that the measure of the set after the intersection is
at least ε so that the following sets are dense in Q:

Dδ
k =

{
p ∈ Q : λ

(
{f ∈ 2ω : m ≥ k ,F (xm) ∈ sp}
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Assume that X = {xk : k ∈ ω} ∈ P(2<ω), ε = λ(Gδ(X )) > 0, and
F : X → ω such that ∀ A ∈ A F−1[A] ∈ tr(N ) � X .
We claim that VQ |= λ

(
Gδ(F−1[Ṡ])
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Problems
Problem 1 (maybe easy)

Can we characterize analytic ideals which has countable I-MAD
families?

Problem 2

Does ā(I) ≤ a hold for each Fσδ P-ideal I? What about Fσ-ideals or
analytic ideals?

Problem 3
Consider the natural extension of an AD family by an ω1-stage finite
support iteration. For which “nicely” definable σ-ideals will the
obtained MAD family be PI-indestructible?

Problem 4
Can we characterize PI-indestructibility of J -MAD families for proper
PI ’s with the CRN and Fσ ideals or Fσδ P-ideals (or even for analytic
ideals)?
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Thank you for your attention!
(and please feel free to solve my questions,)
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